Osteoporosis is a bone disease causing impaired bone strength. It is characterized by increased osteoclast formation or enhanced bone resorption, leading to an increased risk of fragility fractures. Its prevalence increases with age. The advent of an aging population suggests that progressively more individuals will develop this disease in the aging population. A number of drugs for the prevention and treatment of osteoporosis act by inhibiting bone resorption. However, the effectiveness of osteoporosis treatment in clinical practice is limited. Since the osteoclast is the only cell in the body that is capable of resorbing bone, understanding its biology will be necessary for developing a new therapeutic approach for osteoporosis. Recently, it was discovered that the receptor activator of nuclear factor kappaB (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system is an important signal transduction pathway that regulates osteoclast formation. The binding of OPG to RANKL inhibits the binding between RANKL and RANK; this, in turn, prevents osteoclast precursors from differentiating and fusing to form mature osteoclasts. Therefore, the inhibition of the RANK/RANKL pathway inhibits osteoclast formation, differentiation, activation, and bone resorption. A potential clinical antiresorptive therapy can be developed by using an anti-RANKL monoclonal antibody, such as denosumab, that binds to RANKL with high affinity and specificity and blocks RANKL-RANK interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mehy.2008.03.021 | DOI Listing |
Probiotics Antimicrob Proteins
December 2024
Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea.
Probiotics are known to have favorable effects on human health. Nevertheless, probiotics are not always beneficial and can cause unintended adverse effects such as bacteremia and/or inflammation in immunocompromised patients. In the present study, we investigated the effects of probiotics on the regulation of bone metabolism under different health conditions and delivery routes.
View Article and Find Full Text PDFMetabolites
December 2024
Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa.
Objective: Ensuring adequate bone health is crucial for preventing conditions such as osteoporosis and fractures. Zingerone, a phytonutrient isolated from cooked ginger, has gained attention for its potential benefits in bone health. This study evaluated the osteoprotective potential of zingerone and its effects on differentiation and signalling pathways using SAOS-2 osteosarcoma and RAW264.
View Article and Find Full Text PDFAm J Pathol
December 2024
Hearing and Speech Rehabilitation Institute, College of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China. Electronic address:
Craniofacial dysmorphism, skeletal anomalies and impaired intellectual development syndrome" (CFSMR1; OMIM#213980) is characterized by craniofacial dysmorphism, skeletal anomalies, and mental retardation. However, reports of hearing issues have been limited. To investigate hearing-related aspects of CFSMR1, Tmco1 knockout mice (Tmco1) exhibiting similar symptoms to human patients were utilized in this study.
View Article and Find Full Text PDFBone
December 2024
Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA. Electronic address:
Bone sialoprotein (Ibsp/BSP) is a bone-associated extracellular matrix protein. Ibsp knockout (Ibsp) mice exhibit defective alveolar bone formation, mineralization, and healing. We hypothesized BSP would rescue defective alveolar bone healing in a molar extraction model in Ibsp mice.
View Article and Find Full Text PDFExp Ther Med
February 2025
Department of Orthopedics, Tianjin Hospital, Tianjin 300211, P.R. China.
The aim of the present study was to explore the role of ovarian cancer G protein-coupled receptor 1 (OGR1) in osteoclast differentiation and activity induced by extracellular acid. The impact of extracellular acidification on osteoclasts was investigated. Briefly, osteoclasts were generated from RAW 264.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!