Pseudovacuoles--immobilized by high-pressure freezing--are associated with blebbing in walker carcinosarcoma cells.

J Microsc

Department for Topographic Anatomy and Neuroanatomy, Institute of Anatomy, University of Bern, Switzerland.

Published: May 2008

By applying high pressure freezing and freeze-substitution, we observed large inclusions of homogeneous appearance in the front of locomoting Walker carcinosarcoma cells that have not been described earlier. Live cell imaging revealed that these inclusions were poor in lipids and nucleic acids but had a high lysine (and hence protein) content. Usually one such structure 2-5 mum in size was present at the front of motile Walker cells, predominantly in the immediate vicinity of newly forming blebs. By correlating the lysine-rich areas in fixed and embedded cells with electron microscopic pictures, inclusions could be assigned to confined, faintly stained cytoplasmic areas that lacked a surrounding membrane; they were therefore called pseudovacuoles. After high-pressure freezing and freeze substitution, pseudovacuoles appeared to be filled with 20 nm large electron-transparent patches surrounded by 12 and 15 nm large particles. The heat shock protein Hsp90 was identified by peptide sequencing as a major fluorescent band on SDS-PAGE of lysine-labelled Walker cell extracts. By immunofluorescence, Hsp90 was found to be enriched in pseudovacuoles. Colocalization of the lysine with a potassium-specific dye in living cells revealed that pseudovacuoles act as K+ stores in the vicinity of forming blebs. We propose that pseudovacuoles might support blebbing by locally regulating the intracellular hydrostatic pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2818.2008.01982.xDOI Listing

Publication Analysis

Top Keywords

walker carcinosarcoma
8
carcinosarcoma cells
8
forming blebs
8
cells
5
pseudovacuoles
5
pseudovacuoles--immobilized high-pressure
4
high-pressure freezing--are
4
freezing--are associated
4
associated blebbing
4
walker
4

Similar Publications

While low-dose cannabinoid 2 (CB2) receptor agonists attenuate morphine tolerance in cancer pain models, chemokine ligand 12 (CXCL12)/chemokine receptor 4 (CXCR4) expression induces morphine tolerance. Whether CB2 receptor agonists attenuate morphine tolerance by modulating CXCL12/CXCR4 signaling or whether CXCL12/CXCR4 signaling affects the mu opioid receptor (MOR) in the development of morphine tolerance in cancer pain remains unclear. In this study, we investigated the attenuation of morphine tolerance by a non-analgesic dose of the CB2 receptor agonist AM1241, focusing specifically on the modulation of CXCL12/CXCR4 signaling and its effect on the MOR.

View Article and Find Full Text PDF

Introduction: Tumor drug resistance and systemic toxicity are major challenges of modern anticancer therapy. Nanotechnology makes it possible to create new materials with the required properties for anticancer therapy.

Methods: In this research, Dextran-graft-Polyacrylamide/ZnO nanoparticles were used.

View Article and Find Full Text PDF

Honey and Aloe vera Solution Increases Survival and Modulates the Tumor Size In Vivo.

Mol Nutr Food Res

October 2024

Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil.

Scope: The combination of honey and Aloe vera is used as a popular complementary treatment for cancer due to their nutraceutical properties. This study aims to investigate the anticancer activity of honey and A. vera solution and its ethanolic extraction through in vitro and in vivo approaches.

View Article and Find Full Text PDF

Magnetic nanocomposites (MNC) are promising theranostic platforms with tunable physicochemical properties allowing for remote drug delivery and multimodal imaging. Here, we developed doxorubicin-loaded FeO-Au MNC (DOX-MNC) using electron beam physical vapor deposition (EB-PVD) in combination with magneto-mechanochemical synthesis to assess their antitumor effect on Walker-256 carcinosarcoma under the influence of a constant magnetic (CMF) and electromagnetic field (EMF) by comparing tumor growth kinetics, magnetic resonance imaging (MRI) scans and electron spin resonance (ESR) spectra. Transmission (TEM) and scanning electron microscopy (SEM) confirmed the formation of spherical magnetite nanoparticles with a discontinuous gold coating that did not significantly affect the ferromagnetic properties of MNC, as measured by vibrating-sample magnetometry (VSM).

View Article and Find Full Text PDF

Impact of elastic substrate on the dynamic heterogeneity of WC256 Walker carcinosarcoma cells.

Sci Rep

September 2023

Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland.

Cellular heterogeneity is a phenomenon in which cell populations are composed of subpopulations that vary in their behavior. Heterogeneity is particularly pronounced in cancer cells and can affect the efficacy of oncological therapies. Previous studies have considered heterogeneity dynamics to be indicative of evolutionary changes within subpopulations; however, these studies do not consider the short-time morphological plasticity of cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!