Microbial sulphate reduction at a low pH.

FEMS Microbiol Ecol

Department of Lake Research, Helmholtz Centre for Environmental Research - UFZ, Brückstr, Magdeburg, Germany.

Published: June 2008

It is now well established that microbial sulphate-reduction can proceed in environments with a pH<5. This review summarizes existing reports on sulphate reduction at low pH and discusses possible pH effects on sulphate-reducing bacteria. Microbial sulphate reduction has been observed in acidic lakes, wetlands, mesocosms, acidic sulphate soils and bioreactors. Possible inhibitory factors include the metabolites H(2)S and organic acids, which can be toxic depending on pH. Metal sulphide precipitation and competition with other bacteria, namely iron-reducing bacteria, can inhibit sulphate reduction. Theoretical considerations show that normal sulphate reduction rates are too low to maintain a neutral micro niche in an acidic environment. The first acidotolerant sulphate-reducing bacteria have been isolated recently.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6941.2008.00482.xDOI Listing

Publication Analysis

Top Keywords

microbial sulphate
4
sulphate reduction
4
reduction low
4
low well
4
well established
4
established microbial
4
microbial sulphate-reduction
4
sulphate-reduction proceed
4
proceed environments
4
microbial
2

Similar Publications

The vagus nerve is proposed to enable communication between the gut microbiome and the brain, but activity-based evidence is lacking. We find that mice reared germ-free exhibit decreased vagal tone relative to colonized controls, which is reversed via microbiota restoration. Perfusing antibiotics into the small intestines of conventional mice, but not germ-free mice, acutely decreases vagal activity which is restored upon re-perfusion with intestinal filtrates from conventional, but not germ-free, mice.

View Article and Find Full Text PDF

Municipal solid waste (MSW) landfills represent underexplored microbial ecosystems. Landfills contain variable amounts of antibiotic and construction and demolition (C&D) wastes, which have the potential to alter microbial metabolism due to biocidal or redox active components, and these effects are largely underexplored. To circumvent the challenge of MSW heterogeneity, we conducted a 65-day time series study on simulated MSW microcosms to assess microbiome changes using 16S rRNA sequencing in response to 1) Fe(OH)3 and 2) Na2SO4 to represent redox active components of C&D waste as well as 3) antibiotics.

View Article and Find Full Text PDF

Prairie wetland ponds on the Great Plains of North America offer a diverse array of geochemical scenarios that can be informative about their impact on microbial communities. These ecosystems offer invaluable ecological services while experiencing significant stressors, primarily through drainage and climate change. In this first study systematically combining environmental conditions with microbial community composition to identify various niches in prairie wetland ponds, sediments had higher microbial abundance but lower phylogenetic diversity in ponds with lower concentrations of dissolved organic carbon ([DOC]; 10-18 mg/L) and sulfate ([SO ]; 37-58 mg/L) in water.

View Article and Find Full Text PDF

Cobalt regulation biocathode with sulfate-reducing bacteria for enhancing the reduction of antimony and the removal of sulfate in a microbial electrolysis cell simultaneously.

Environ Res

January 2025

School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, PR. China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR. China. Electronic address:

Antimony (Sb) contamination in water resources poses a critical environmental and health challenge globally. Sulfate reducing bacteria (SRB) are employed to reduce SO to S for removing Sb in a microbial electrolysis cell (MEC). Yet, the reduction efficiency of reducing SO and Sb(Ⅴ) through SRB remains relatively low, and the underlying mechanism remains elusive.

View Article and Find Full Text PDF

Starch-rich faba bean, yellow lentil, and yellow field pea flours were subjected to submerged fermentation using Aspergillus oryzae and Lactobacillus plantarum starter mono- or co-cultures, to increase protein contents of the flours. Fermentation mixes were supplemented with up to 35 g/L urea, ammonium sulfate and/or monoammonium phosphate as nitrogen sources. Protein contents of the flours increased 2-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!