Anchorage to the cytosolic face of the endoplasmic reticulum membrane: a new strategy to stabilize a cytosolic recombinant antigen in plants.

Plant Biotechnol J

Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, Via Bassini 15, 20133 Milan, Italy.

Published: August 2008

The levels of accumulation of recombinant vaccines in transgenic plants are protein specific and strongly influenced by the subcellular compartment of destination. The human immunodeficiency virus protein Nef (negative factor), a promising target for the development of an antiviral vaccine, is a cytosolic protein that accumulates to low levels in transgenic tobacco and is even more unstable when introduced into the secretory pathway, probably because of folding defects in the non-cytosolic environment. To improve Nef accumulation, a new strategy was developed to anchor the molecule to the cytosolic face of the endoplasmic reticulum (ER) membrane. For this purpose, the Nef sequence was fused to the C-terminal domain of mammalian ER cytochrome b5, a long-lived, tail-anchored (TA) protein. This consistently increased Nef accumulation by more than threefold in many independent transgenic tobacco plants. Real-time polymerase chain reaction of mRNA levels and protein pulse-chase analysis indicated that the increase was not caused by higher transcript levels but by enhanced protein stability. Subcellular fractionation and immunocytochemistry indicated that Nef-TA accumulated on the ER membrane. Over-expression of mammalian or plant ER cytochrome b5 caused the formation of stacked membrane structures, as observed previously in similar experiments performed in mammalian cells; however, Nef-TA did not alter membrane organization in tobacco cells. Finally, Nef could be removed in vitro by its tail-anchor, taking advantage of an engineered thrombin cleavage site. These results open up the way to use tail-anchors to improve foreign protein stability in the plant cytosol without perturbing cellular functions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1467-7652.2008.00342.xDOI Listing

Publication Analysis

Top Keywords

cytosolic face
8
face endoplasmic
8
endoplasmic reticulum
8
reticulum membrane
8
transgenic tobacco
8
nef accumulation
8
protein stability
8
protein
7
membrane
5
nef
5

Similar Publications

β-coronavirus rearranges the host cellular membranes to form double-membrane vesicles (DMVs) via NSP3/4, which anchor replication-transcription complexes (RTCs), thereby constituting the replication organelles (ROs). However, the impact of specific domains within NSP3/4 on DMV formation and RO assembly remains largely unknown. By using cryogenic-correlated light and electron microscopy (cryo-CLEM), we discovered that the N-terminal and C-terminal domains (NTD and CTD) of SARS-CoV-2 NSP3 are essential for DMV formation.

View Article and Find Full Text PDF

Mechanistic target of rapamycin complex 1 (mTORC1), which consists of mTOR, Raptor, and mLST8, receives signaling inputs from growth factor signals and nutrients. These signals are mediated by the Rheb and Rag small GTPases, respectively, which activate mTORC1 on the cytosolic face of the lysosome membrane. We biochemically reconstituted the activation of mTORC1 on membranes by physiological submicromolar concentrations of Rheb, Rags, and Ragulator.

View Article and Find Full Text PDF

Transcriptomic insights into the antagonistic responses of Antarctic marbled rockcod, Notothenia rossii, to elevated temperature and acidification.

Ecotoxicol Environ Saf

November 2024

Division of Life Sciences, Korea Polar Research Institute, Incheon, Republic of Korea; Polar Science, University of Science and Technology, Incheon, Republic of Korea. Electronic address:

The escalating impacts of climate change, particularly ocean acidification and warming, are pivotal stressors for marine ecosystems and have profound effects on biota in polar regions. This study investigated the immunological responses of the Antarctic fish Notothenia rossii to environmental stressors indicative of future ocean conditions under the Intergovernmental Panel on Climate Change Shared Socioeconomic Pathways 5-8.5 scenario for 2100.

View Article and Find Full Text PDF

The advent of lipid nanoparticles (LNPs) as a delivery platform for mRNA therapeutics has revolutionized the biomedical field, particularly in treating infectious diseases, cancer, genetic disorders, and metabolic diseases. Recent Advances in Therapeutic LNPs: LNPs, composed of ionizable lipids, phospholipids, cholesterol, and polyethylene glycol (PEG) lipids, facilitate efficient cellular uptake and cytosolic release of mRNA while mitigating degradation by nucleases. However, as synthetic entities, LNPs face challenges that alter their therapeutic efficacy and safety concerns.

View Article and Find Full Text PDF

The Bor1 elevator transport cycle is subject to autoinhibition and activation.

Nat Commun

October 2024

Laboratory of Membrane Proteins and Structural Biology, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.

Boron, essential for plant growth, necessitates precise regulation due to its potential toxicity. This regulation is achieved by borate transporters (BORs), which are homologous to the SLC4 family. The Arabidopsis thaliana Bor1 (AtBor1) transporter from clade I undergoes slow regulation through degradation and translational suppression, but its potential for fast regulation via direct activity modulation was unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!