Quantum sieving effect of three-dimensional Cu-based organic framework for H2 and D2.

J Am Chem Soc

Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba, 263-8522, Japan.

Published: May 2008

The crystal structure of [Cu(4,4'-bipyridine) 2(CF 3SO 3) 2] n metal-organic framework (CuBOTf) of one-dimensional pore networks after pre-evacuation at 383 K was determined with synchrotron X-ray powder diffraction measurement. Effective nanoporosity of the pre-evacuated CuBOTf was determined with N 2 adsorption at 77 K. The experimental H 2 and D 2 adsorption isotherms of CuBOTf at 40 and 77 K were measured and then compared with GCMC-simulated isotherms using the effective nanoporosity. The quantum-simulated H 2 and D 2 isotherms at 77 K using the Feynman-Hibbs effective potential coincided with the experimental ones, giving a direct evidence on the quantum molecular sieving effect for adsorption of H 2 and D 2 on CuBOTf. However, the selectivity for the 1:1 mixed gas of H 2 and D 2 was 1.2. On the contrary, experimental H 2 and D 2 isotherms at 40 K had an explicit adsorption hysteresis, originating from the marked pore blocking effect on measuring the adsorption branch. The blocking effect for quantum H 2 is more prominent than that for quantum D 2; the selectivity for D 2 over H 2 at 40 K was in the range of 2.6 to 5.8. The possibility of the quantum molecular sieving effect for H 2 and D 2 adsorption on [Cu 3(benzene-1,3,5-tricarboxylate) 2(H 2O) 3] n of three-dimensional pore networks was also shown at 77 K.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja077469fDOI Listing

Publication Analysis

Top Keywords

pore networks
8
effective nanoporosity
8
quantum molecular
8
molecular sieving
8
sieving adsorption
8
adsorption
6
quantum
5
quantum sieving
4
sieving three-dimensional
4
three-dimensional cu-based
4

Similar Publications

Synthesis of zirconium-based metal-organic framework/gelatin aerogel for removing phosphate and fluoride from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:

This study describes the preparation of novel hybrid aerogels derived from gelatin (Gel), incorporating Br-functionalized zirconium-based metal-organic framework (UiO-66-Br; MOF) as modifying agent to effectively eliminate phosphate and fluoride ions from aqueous environments. The adsorption performance of MOF decorated Gel (Gel-xMOF) hybrid aerogels was investigated under different conditions, including agitation time, adsorbent dosage, solution pH, initial phosphate and fluoride concentrations, coexisting ions, and temperature. The functional groups of the gelatin network, coupled with UiO-66-Br, enhanced the adsorption performance of phosphate and fluoride ions from aqueous solutions.

View Article and Find Full Text PDF

Cryogels were fabricated by combining polyvinyl alcohol (PVA) and chitosan of varying molecular weights (Mw). In this study, the effects of chitosan Mw, types of boron-containing molecules on network formation, and boron release rate in resulted cryogels were investigated. The PVA/chitosan blend maintained a constant 4.

View Article and Find Full Text PDF

Chemical weathering of lithologies with high geochemical backgrounds such as black shale has been proposed to be a critical source for toxic elements in soil and water systems. However, mechanisms controlling the release, migration and enrichment of toxic elements during black shale weathering are poorly understood. This study utilized a suite of micro analytical techniques such as TESCAN integrated mineral analyzer (TIMA), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and electron micro-probe analysis (EMPA) to elucidate the intimate relationship between mineralogical transformations and elemental behaviors from profile scale to mineral scale.

View Article and Find Full Text PDF

Enhancing Tribo-Rehydration in Hydrogel by Brush-Like Surface and Its Modulation.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

Synovial exudation, creeping, and lubrication failure in natural cartilage under a long-term normal loading can be counteracted by a tribo-rehydration (sliding-induced rehydration) phenomenon. Hydrogels, as porous materials, can also restore interfacial lubrication and overcome creep through this strategy. At appropriate sliding velocities, water molecules at the interface contact inlet are driven by hydrodynamic pressures into the porous network to resist creep extrusion.

View Article and Find Full Text PDF

Carbon aerogels, characterized by their high porosity and superior electrical performance, present significant potential for the development of highly sensitive pressure sensors. However, facile and cost-effective fabrication of biomass-based carbon aerogels that concurrently possess high sensitivity, high elasticity, and excellent fatigue resistance remains a formidable challenge. Herein, a piezoresistive sensor with a layered network microstructure (BCNF-rGO-CS) was successfully fabricated using bamboo nanocellulose fiber (BCNF), chitosan (CS), and graphene oxide (GO) as raw materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!