Carbonic anhydrase III (CAIII) is distinguished from the other members of the CA family by low carbon dioxide hydratase activity, resistance to the CA inhibitor acetazolamide, and a predominant expression in the liver of males. In this report the effects of CAIII expression on liver cancer cells invasiveness were explored. Overexpression of CAIII in the HCC cell line SK-Hep1 resulted in increased anchorage-independent growth and invasiveness. And siRNA-mediated silencing of CAIII expression decreased the invasive ability of SK-Hep1 cells. Furthermore, CAIII transfectants showed elevated focal adhesion kinase (FAK) and Src activity. Silencing of FAK expression in CAIII transfectants led to suppression of HCC cell invasion. More importantly, the CAIII transfectants acidified the culture medium at an accelerated speed than the control cells did. Taken together, these data suggest that the CAIII-promoted invasive ability of HCC cells may probably be mediated through, at least in part, the FAK signaling pathway via intracellular and/or extracellular acidification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mc.20448 | DOI Listing |
Gene
December 2020
Balikesir University, Faculty of Science and Literature, Department of Molecular Biology and Genetics, Balıkesir, Turkey. Electronic address:
Carbonic Anhydrase III (CAIII) belongs to a member of the alpha Carbonic Anhydrase (CA) family. Although some CA members are strongly up-regulated by HIF1-α, it is not known about the transcriptional regulation of CAIII in prostate cancer cells, PCa. Therefore, we aimed to identify regulatory regions important for the regulation of CAIII gene under hypoxic conditions in human prostate cancer cells (PC3).
View Article and Find Full Text PDFJ Orthop Translat
May 2020
Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China.
Background: Carbonic anhydrase III (CAIII) is expressed abundantly in slow skeletal muscles, adipocytes, and the liver. It plays a critical role in maintaining intracellular pH, antioxidation, and energy metabolism, which are further involved in fatigue. However, its function and mechanism in maintaining the physiological function of muscles or antifatigue are still ambiguous.
View Article and Find Full Text PDFFEBS J
January 2010
Department of Biological & Biomedical Sciences, Glasgow Caledonian University, City Campus, Glasgow, UK.
EVI1 is a nuclear zinc finger protein essential to normal development, which participates in acute myeloid leukaemia progression and transforms Rat1 fibroblasts. In this study we show that enforced expression of Evi1 in Rat1 fibroblasts protects from paclitaxel-induced apoptosis, consistent with previously published studies. Surprisingly, however, these cells show increased sensitivity to hydrogen peroxide (H(2)O(2))-induced apoptosis, demonstrated by elevated caspase 3 catalytic activity.
View Article and Find Full Text PDFMol Carcinog
December 2008
Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC.
Carbonic anhydrase III (CAIII) is distinguished from the other members of the CA family by low carbon dioxide hydratase activity, resistance to the CA inhibitor acetazolamide, and a predominant expression in the liver of males. In this report the effects of CAIII expression on liver cancer cells invasiveness were explored. Overexpression of CAIII in the HCC cell line SK-Hep1 resulted in increased anchorage-independent growth and invasiveness.
View Article and Find Full Text PDFExp Cell Res
December 1999
MRC Clinical Sciences Centre, Hammersmith Hospital, London, W12 ONN, United Kingdom.
The ability to carry out gene targeting in somatic stem cells while maintaining their stem cell characteristics would have important implications for gene therapy and for the analysis of gene function. Using mouse myoblasts, we have explored this possibility by attempting to alter the promoter of a myosin heavy chain gene (MyHCIIB) characteristic of physiologically "fast" muscle so as to force its unscheduled expression in physiologically "slow" muscle fibers. Conditionally immortalized muscle precursor cells were transfected with a gene targeting construct designed to replace the MyHCIIB promoter with that for the carbonic anhydrase III gene (CAIII), which is highly expressed in slow muscle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!