AI Article Synopsis

Article Abstract

Since 1996, higher than background levels of naturally occurring radioactivity have been documented in both fossil and mineral deposits at Hagerman Fossil Beds National Monument in south-central Idaho. Radioactive fossil sites occur primarily within an elevation zone of 900-1000 m above sea level and are most commonly found associated with ancient river channels filled with sand. Fossils found in clay rich deposits do not exhibit discernable levels of radioactivity. Out of 300 randomly selected fossils, approximately three-fourths exhibit detectable levels of natural radioactivity ranging from 1 to 2 orders of magnitude above ambient background levels when surveyed with a portable hand held Geiger-Muller survey instrument. Mineral deposits in geologic strata also show above ambient background levels of radioactivity. Radiochemical lab analysis has documented the presence of numerous natural radioactive isotopes. It is postulated that ancient groundwater transported radioactive elements through sand bodies containing fossils which precipitated out of solution during the fossilization process. The elevated levels of natural radioactivity in fossils may require special precautions to ensure that exposures to personnel from stored or displayed items are kept as low as reasonably achievable (ALARA).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvrad.2008.02.004DOI Listing

Publication Analysis

Top Keywords

background levels
12
radioactivity fossils
8
hagerman fossil
8
fossil beds
8
beds national
8
national monument
8
mineral deposits
8
levels radioactivity
8
levels natural
8
natural radioactivity
8

Similar Publications

Background: Although existing disease preparedness and response frameworks provide guidance about strengthening emergency response capacity, little attention is paid to health service continuity during emergency responses. During the 2014 Ebola outbreak, there were 11,325 reported deaths due to the Ebola virus and yet disruption in access to care caused more than 10,000 additional deaths due to measles, HIV/AIDS, tuberculosis, and malaria. Low- and middle-income countries account for the largest disease burden due to HIV, tuberculosis, and malaria and yet previous responses to health emergencies showed that HIV, tuberculosis, and malaria service delivery can be significantly disrupted.

View Article and Find Full Text PDF

Background: Some scholars who are skeptical about open-access mega journals (OAMJs) have argued that low-quality papers are often difficult to publish in more prestigious and authoritative journals, and OAMJs may be their main destination.

Objective: This study aims to evaluate the academic quality of OAMJs and highlight their important role in clinical medicine. To achieve this aim, authoritative journals and representative OAMJs in this field were selected as research objects.

View Article and Find Full Text PDF

Background: Health care systems and the nursing profession worldwide are being transformed by technology and digitalization. Nurses acquire digital competence through their own experience in daily practice, but also from education and training; nursing education providers thus play an important role. While nursing education providers have some level of digital competence, there is a need for ongoing training and support for them to develop more advanced skills and effectively integrate technology into their teaching.

View Article and Find Full Text PDF

Background: An accurate knowledge of a patient's risk of cord-level intraoperative neuromonitoring (IONM) data loss is important for an informed decision-making process prior to deformity correction, but no prediction tool currently exists.

Methods: A total of 1,106 patients with spinal deformity and 205 perioperative variables were included. A stepwise machine-learning (ML) approach using random forest (RF) analysis and multivariable logistic regression was performed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!