Type I Interferon (IFN-alpha/beta) therapy has altered the natural course of multiple sclerosis. In this paper we evaluate the possible molecular mechanisms involved in the in vitro effects of IFN-alpha/beta on peripheral blood mononuclear cells from patients with clinically definite Relapsing-Remitting Multiple Sclerosis. The total RNA from IFN-alpha, IFN-beta treated cells and untreated cells was extracted and amplified for CD86, CD28, CTLA-4, TNF-alpha, IFN-gamma, CCL2, CCR5, IL-13, MMP-9, TIMP-1, CD25, TGF-beta, IL-10 and the transcriptional factor Foxp3 by Reverse Transcription-Polymerase Chain Reaction and the CD4+CD25high subset was evaluated using flow cytometry. In general, there were no significant differences concerning the modulation of the genes studied in the response to IFN-alpha and IFN-beta treatments, which suggest a similar mechanism of action for both interferons. However, we found a significant increment in IFN-gamma expression after IFN-alpha but not after IFN-beta treatments. The in vitro treatment of mononuclear cells from multiple sclerosis patients with both interferons significantly increased the CD25 mRNA. Furthermore, we observed a CD25/Foxp3 correlation and an increment of the CD4+CD25high subset, indicating that the induction of regulatory T cells could be a crucial mechanism involved in the type I interferon effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2008.02.003DOI Listing

Publication Analysis

Top Keywords

multiple sclerosis
16
mononuclear cells
12
ifn-alpha ifn-beta
12
peripheral blood
8
blood mononuclear
8
cells multiple
8
sclerosis patients
8
type interferon
8
cd4+cd25high subset
8
ifn-beta treatments
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!