Grb2 adaptor undergoes conformational change upon dimerization.

Arch Biochem Biophys

Department of Biochemistry and Molecular Biology and the UM/Sylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Gautier Building, Room 214, 1011 NW 15th Street, Miami, FL 33136, USA.

Published: July 2008

Grb2 is an adaptor protein that couples activated receptor tyrosine kinases to downstream effector molecules such as Ras and Akt. Despite being a central player in mitogenic signaling and a target for therapeutic intervention, the role of Grb2 oligomerization in cellular signaling is not well understood. Here, using the techniques of size-exclusion chromatography, mass spectrometry, analytical ultra-centrifugation and isothermal titration calorimetry, we demonstrate that Grb2 exists in monomer-dimer equilibrium in solution and that the dissociation of dimer into monomers is entropically-driven without an unfavorable enthalpic change at physiological temperatures. Our data indicate that enthalpy and entropy of dimer dissociation are highly temperature-dependent and largely compensate each other resulting in negligible effect of temperature on the overall free energy. From the plot of enthalpy change versus temperature, the magnitude of heat capacity change derived is much smaller than that expected from the rather large molecular surfaces becoming solvent-occluded upon Grb2 dimerization, implying that Grb2 monomers undergo conformational rearrangement upon dimerization. 3D structural models of Grb2 dimer and monomers suggest strongly that such conformational rearrangement upon dimerization may arise from domain swapping. Taken together, our study provides novel insights into the role of Grb2 as an adaptor in cellular signaling circuitry and how Grb2 dimerization may impart high fidelity in signal transduction as well as lead to rapid signal amplification upon receptor stimulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2008.04.008DOI Listing

Publication Analysis

Top Keywords

grb2 adaptor
12
grb2
9
role grb2
8
cellular signaling
8
dimer monomers
8
grb2 dimerization
8
conformational rearrangement
8
rearrangement dimerization
8
dimerization
5
adaptor undergoes
4

Similar Publications

Purpose: Therapeutic efficacy of KRASG12C(OFF) inhibitors (KRASG12Ci) in KRASG12C-mutant non-small cell lung cancer (NSCLC) varies widely. The activation status of RAS signaling in tumors with KRASG12C mutation remains unclear, as its ability to cycle between the active GTP-bound and inactive GDP-bound states may influence downstream pathway activation and therapeutic responses. We hypothesized that the interaction between RAS and its downstream effector RAF in tumors may serve as indicators of RAS activity, rendering NSCLC tumors with a high degree of RAS engagement and downstream effects more responsive to KRASG12Ci compared to tumors with lower RAS---RAF interaction.

View Article and Find Full Text PDF

Psoriasis is an inflammatory dermatosis that features overproliferation and inflammatory reaction of keratinocytes. A study reported that IL-22 is involved in the pathogenesis of psoriasis by mediating miR-124 to regulate the expression of fibroblast growth factor receptor 2 in keratinocytes. A microRNA may target multiple target genes.

View Article and Find Full Text PDF

The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter protein function or cell signaling. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized.

View Article and Find Full Text PDF

DDR1 promotes metastasis of cervical cancer and downstream phosphorylation signal via binding GRB2.

Cell Death Dis

November 2024

Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.

Cervical cancer is a leading cause of cancer-related death among women and its recurrence and metastasis poses challenges to treatment. Discoidin domain receptor 1 (DDR1) was associated with cellular migration and invasion in several types of cancers. However, its function in cervical cancer is still unclear.

View Article and Find Full Text PDF

Despite SH2 domains, being pivotal in protein interactions linked to various diseases like cancer, we lack specific research tools for intracellular assays. Understanding SH2-mediated interactions and creating effective inhibitors requires tools which target individual protein domains. Affimer reagents exhibit promise, yet their potential against the extensive SH2 domain family remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!