Highly porous polymeric materials with pore sizes ranging from 100 nm to 1 microm are a very challenging class of materials not only to prepare synthetically (due to the high capillary pressures generated upon solvent removal) but also to characterize structurally. Through the examples of three different types of porous compounds synthesized in our laboratory (i) high-density melamine-based "MF-hd" with monomodal pore diameters around 500-900 nm, (ii) low-density melamine-based "MF-ld" with bimodal pore size distribution and average diameters around 2.3 microm and 350 nm, (iii) highly porous polyurethane "PU" with monomodal pore sizes around 150 nm, we confirm the limitations of mercury porosimetry as a means to investigate the architecture of materials with very high porosity (>80 vol %) and low compressive strength. Instead, a combination of high-resolution scanning electron microscopy and small-angle and ultrasmall-angle X-ray scattering (SAXS and USAXS, respectively) studies of these three types of materials helps in determining both the network and the pore structures. This work elucidates the need and applicability of the SAXS/USAXS techniques in characterizing such porous materials. For instance, the polyurethane specimens can only be quantitatively characterized by scattering techniques, the results of which are corroborated by high-resolution scanning electron microscopy observations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la800197p | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!