Metals leaching behavior of air pollution control residues (APC residues) from municipal solid waste incinerator (MSWI) is greatly dependent on the leachate pH. pH-varying leaching tests and Visual MINTEQ modeling were conducted to investigate the mechanism of pH effect on the metals leaching characteristics from MSWI APC residues. Results show that, under acidic environment (for Cd, Zn, and Ni, pH < 8; for Pb, Cu, and Cr, pH < 6; for Al, pH < 4), leaching concentrations of metals increase greatly with the decrease of pH. Release of amphoteric metals, Pb and Zn, can be induced in strong alkaline leachate, reaching to 42 and 2.4 mg x L(-1) at pH 12.5 respectively. The equilibrium modeling results are well in agreement with the analyzed leaching concentrations. Variation of leachate pH changes the metals speciation in the leaching system, thus influencing their leaching concentrations. Speciation and leaching behavior of Pb, Zn, Cu, Ca, and Al mainly depend on their dissolution/precipitation reactions under different leachate pH. Leachability of Cd, Cr, and Ni can be lowered under acidic and neutral leachate pH due to HFO adsorption, while under alkaline conditions, the effect of adsorption is not significant and dissolution/precipitation becomes the major reactions controlling the leaching toxicity of these heavy metals.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!