Field emission scanning electron microscopy (FESEM) and scanning electron microscopy with energy dispersive X-ray detector (SEM-EDX) were used to study the four aerosol samples collected in Beijing air during the fog and non-fog episodes in winter. Size-distribution of mineral particles in fog sample displayed two major peaks at the size range of 0.1-0.3 microm and 1-2.5 microm. EDX analyses indicated that the major chemical compositions varied greatly in the individual mineral particles of the fog and non-fog episodes, especially the sulfur. A total of 9 different mineral categories were classified, namely, "Si-rich", "Ca-rich", "S-rich", "Fe-rich", "Mg-rich", "Al-rich", "Ti-rich", "K-rich" and "Cl-rich". About 55% of the "Ca-rich" in the fog samples comprised of Ca (50% +/- 1.2%)and S (37% +/- 1.6%) and about 72% of the "S-rich" comprised of S (44% +/- 1.5%) and Ca (33% +/- 2%), illustrating that particles with abundant sulfur were also enriched with abundant calcium. It is suggested that the "Ca-rich" alkali minerals could alleviate acidity of the fog water in Beijing air. The S/Ca mean ratio of mineral particles in the fog sample was 6.11, being 8 times higher than the S/Ca mean ratio of the non-fog samples (0.73). This result showed that sulfuration on the surfaces of aerosol particles was extremely severe, and that the conversion efficiency from SO2 to sulfates was relatively high.
Download full-text PDF |
Source |
---|
Small
January 2025
School of Materials and Physics & Center of Mineral Resource Waste Recycling, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
Designing spent graphite anodes from lithium-ion batteries (LIBs) for applications beyond regenerated batteries offers significant potential for promoting the recycling of spent LIBs. The battery-grade graphite, characterized by a highly graphitized structure, demonstrates excellent conductive loss capabilities, making it suitable for microwave absorption. During the Li-ion intercalation and deintercalation processes in battery operation, the surface layer of spent graphite (SG) becomes activated, forming oxygen-rich functional groups that enhance the polarization loss mechanism.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Eberhard Karls University of Tübingen, Department of Geosciences, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany.
Concentrations of pollutants like pharmaceuticals in soils typically decrease over time, though it often remains unclear whether this dissipation is caused by the transformation of the pollutant or a decreasing extractability. We developed a mathematical model that (1) explores the plausibility of different dissipation pathways, and (2) allows the quantification of concentration differences between aqueous soil extracts and soil solution. The model considers soil particles as uniform spheres, kinetic sorption towards an equilibrium (Freundlich model), and two dissipation pathways, irreversible transformation and mineralization (following 1 order kinetics) as well as the formation of non-extractable residues intraparticle diffusion.
View Article and Find Full Text PDFBiomater Sci
January 2025
Department of Human Anatomy, School of Basic Medical Sciences Guangdong Medical University, 524000, Zhanjiang, China.
Myoelectric biofeedback (EMG-BF) is a widely recognized and effective method for treating movement disorders caused by impaired nerve function. However, existing EMG-feedback devices are almost entirely located in large medical centers, which greatly limits patient accessibility. To address this critical limitation, there is an urgent need to develop a portable, cost-effective, and real-time monitoring device that can transcend the existing barriers to the treatment of EMG-BF.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Orthopedics, Zhuhai Medical College (Zhuhai People's Hospital), State Key Laboratory of Bioactive Molecules and Druggability Assessment, College of Chemistry and Materials Science, Jinan University, Zhuhai, 519000, China.
Spinal cord injury (SCI) is a critical condition affecting the central nervous system that often has permanent and debilitating consequences, including secondary injuries. Oxidative damage and inflammation are critical factors in secondary pathological processes. Selenium nanoparticles have demonstrated significant antioxidative and anti-inflammatory properties via a non-immunosuppressive pathway; however, their clinical application has been limited by their inadequate stability and functionality to cross the blood-spinal cord barrier (BSCB).
View Article and Find Full Text PDFBone
January 2025
Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California at San Francisco, San Francisco, CA, United States of America.
This paper presents a review of the potential role of the endoplasmic reticulum/Golgi complex and intracellular vesicles in mediating events leading to or associated with vertebrate tissue mineralization. The possible importance of these organelles in this process is suggested by observations that calcium ions accumulate in the tubules and lacunae of the endoplasmic reticulum and Golgi. Similar levels of calcium ions (approaching millimolar) are present in vesicles derived from endosomes, lysosomes and autophagosomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!