Large-scale computational and statistical analyses of high transcription potentialities in 32 prokaryotic genomes.

Nucleic Acids Res

Computer Science Institute of Nantes-Atlantic (Lina), U.M.R. C.N.R.S. 6241, University of Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex, France.

Published: June 2008

This article compares 32 bacterial genomes with respect to their high transcription potentialities. The sigma70 promoter has been widely studied for Escherichia coli model and a consensus is known. Since transcriptional regulations are known to compensate for promoter weakness (i.e. when the promoter similarity with regard to the consensus is rather low), predicting functional promoters is a hard task. Instead, the research work presented here comes within the scope of investigating potentially high ORF expression, in relation with three criteria: (i) high similarity to the sigma70 consensus (namely, the consensus variant appropriate for each genome), (ii) transcription strength reinforcement through a supplementary binding site--the upstream promoter (UP) element--and (iii) enhancement through an optimal Shine-Dalgarno (SD) sequence. We show that in the AT-rich Firmicutes' genomes, frequencies of potentially strong sigma70-like promoters are exceptionally high. Besides, though they contain a low number of strong promoters (SPs), some genomes may show a high proportion of promoters harbouring an UP element. Putative SPs of lesser quality are more frequently associated with an UP element than putative strong promoters of better quality. A meaningful difference is statistically ascertained when comparing bacterial genomes with similarly AT-rich genomes generated at random; the difference is the highest for Firmicutes. Comparing some Firmicutes genomes with similarly AT-rich Proteobacteria genomes, we confirm the Firmicutes specificity. We show that this specificity is neither explained by AT-bias nor genome size bias; neither does it originate in the abundance of optimal SD sequences, a typical and significant feature of Firmicutes more thoroughly analysed in our study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2425493PMC
http://dx.doi.org/10.1093/nar/gkn135DOI Listing

Publication Analysis

Top Keywords

high transcription
8
transcription potentialities
8
genomes
8
bacterial genomes
8
strong promoters
8
element putative
8
genomes at-rich
8
high
6
promoters
5
large-scale computational
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!