Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background Context: Lumbar fusion is traditionally used to restore stability after wide surgical decompression for spinal stenosis. The Total Facet Arthroplasty System (TFAS) is a motion-restoring implant suggested as an alternative to rigid fixation after complete facetectomy.
Purpose: To investigate the effect of TFAS on the kinematics of the implanted and adjacent lumbar segments.
Study Design: Biomechanical in vitro study.
Methods: Nine human lumbar spines (L1 to sacrum) were tested in flexion-extension (+8 to -6Nm), lateral bending (+/-6Nm), and axial rotation (+/-5Nm). Flexion-extension was tested under 400 N follower preload. Specimens were tested intact, after complete L3 laminectomy with L3-L4 facetectomy, after L3-L4 pedicle screw fixation, and after L3-L4 TFAS implantation. Range of motion (ROM) was assessed in all tested directions. Neutral zone and stiffness in flexion and extension were calculated to assess quality of motion.
Results: Complete laminectomy-facetectomy increased L3-L4 ROM compared with intact in flexion-extension (8.7+/-2.0 degrees to 12.2+/-3.2 degrees, p<.05) lateral bending (9.0+/-2.5 degrees to 12.6+/-3.2 degrees, p=.09), and axial rotation (3.8+/-2.7 degrees to 7.8+/-4.5 degrees p<.05). Pedicle screw fixation decreased ROM compared with intact, resulting in 1.7+/-0.5 degrees flexion-extension (p<.05), 3.3+/-1.4 degrees lateral bending (p<.05), and 1.8+/-0.6 degrees axial rotation (p=.09). TFAS restored intact ROM (p>.05) resulting in 7.9+/-2.1 degrees flexion-extension, 10.1+/-3.0 degrees lateral bending, and 4.7+/-1.6 degrees axial rotation. Fusion significantly increased the normalized ROM at all remaining lumbar segments, whereas TFAS implantation resulted in near-normal distribution of normalized ROM at the implanted and remaining lumbar segments. Flexion and extension stiffness in the high-flexibility zone decreased after facetectomy (p<.05) and increased after simulated fusion (p<.05). TFAS restored quality of motion parameters (load-displacement curves) to intact (p>.05). The quality of motion parameters for the whole lumbar spine mimicked L3-L4 segmental results.
Conclusions: TFAS restored range and quality of motion at the operated segment to intact values and restored near-normal motion at the adjacent segments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.spinee.2008.01.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!