Cesium leaching from gamma-irradiated CsA and CsX zeolites.

J Hazard Mater

Universidad Autónoma Metropolitana, Iztapalapa, A. P. 55-532, Av. San Rafael Atlixco No. 186 Col. Vicentina, 09340 México, D.F., Mexico.

Published: December 2008

The present study discusses the effect of gamma-irradiation on Cs+-exchanged X and A zeolites. The incorporation of Cs+ ions into A and X zeolites was performed using three different cesium salts (chloride, nitrate or acetate). Cs+ ions immobilized into the vitrified zeolites by thermal treatment are located in different sites of the zeolite networks. It is found that gamma-irradiation favors cesium retention depending on the cesium precursor salt used in the cationic exchange step.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2008.03.035DOI Listing

Publication Analysis

Top Keywords

cs+ ions
8
cesium
4
cesium leaching
4
leaching gamma-irradiated
4
gamma-irradiated csa
4
csa csx
4
zeolites
4
csx zeolites
4
zeolites study
4
study discusses
4

Similar Publications

Iron plays a prominent role in various biological processes and is an essential element in almost all organisms, including plant-pathogenic fungi. As a transition element, iron occurs in two redox states, Fe and Fe, the transition between which generates distinct reactive oxygen species (ROS) such as HO, OH anions, and toxic OH· radicals. Thus, the redox status of Fe determines ROS formation in pathogen attack and plant defense and governs the outcome of pathogenic interactions.

View Article and Find Full Text PDF

The prominence of binuclear catalysts underlines the need for the design and development of diverse bifunctional ligand frameworks that exhibit tunable electronic and structural properties. Such strategies enable metal-metal and ligand-metal cooperation towards catalytic applications, improve catalytic activity, and are essential for advancing multi-electron transfers for catalytic application. Hereby, we present the synthesis, crystal structure, and photocatalytic properties of a binuclear Ni(II) complex, [Ni2(1,10-phenanthroline)2(2-sulfidophenolate)2] (1), which crystallizes in the centrosymmetric triclinic system (P-1) showing extensive intra- and inter- non-coordinated interactions.

View Article and Find Full Text PDF

Highly Green Fluorescent Carbon Dots from Gallic Acid: A Turn-On Sensor toward Pb Ions.

ACS Omega

January 2025

Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.

Carbon dots (CDs) are emerging novel fluorescent sensing nanomaterials owing to their tunable optical properties, biocompatibility, and eco-friendliness. Herein, we report a facile one-pot hydrothermal route for the synthesis of highly green fluorescent CDs using gallic acid (GA) as a single carbon source in ,-dimethylformamide (DMF) solvent, which serves as a nitrogen source and reaction medium. The optical properties of the synthesized GA-DMF CDs were systematically characterized by using UV-vis and photoluminescence spectroscopy, revealing strong green fluorescence.

View Article and Find Full Text PDF

Synthesis of UiO-66-NH@PSF Hollow Fiber Membrane with Enhanced Simultaneous Adsorption of Pb and Phosphate for Hydrogen Peroxide Purification.

ACS Appl Mater Interfaces

January 2025

Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China.

Electronic grade hydrogen peroxide plays a crucial role in the fabrication of large-scale integrated circuits. However, hydrogen peroxide prepared by the anthraquinone method contains impurities such as lead ions (Pb) and phosphate, which can seriously affect the yield of the circuit. Traditional adsorbent materials have difficulty in solving the problem of simultaneous adsorption of trace anions and cations in hydrogen peroxide due to the single adsorption site and poor adsorption kinetics.

View Article and Find Full Text PDF

Addressing the challenges of the efficiency and stability of red perovskite nanocrystals is imperative for the successful deployment of these materials in displays and lighting applications. the structural dynamic changes of red perovskite quantum dots (PQDs) are explored using a flow chemistry system to solve the above hurdles. First, the ultrabright red-emitting PQDs of CsPb(Br,I) are achieved by adjusting ligand distribution (oleic acid and oleyamine) in combination with different flow rates and equivalence ratios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!