In this study, the widespread environmental pollutants 1-nitronaphthalene (1NN), 1,5-dinitronaphthalene (1,5DNN), 2-nitrofluorene (2NF) and 9-nitroanthracene (9NA), were investigated for genotoxicity in the wing somatic mutation and recombination test (SMART) of Drosophila--using the high bioactivation (HB) cross. Our in vivo experiments demonstrated that all compounds assessed induced genetic toxicity, causing increased incidence of homologous somatic recombination. 2NF, 9NA and 1NN mutant clone induction is almost exclusively related to somatic recombination, although 1,5DNN-clone induction depends on both mutagenic and recombinagenic events. 1NN has the highest recombinagenic activity (approximately 100%), followed by 2NF (approximately 77%), 9NA (approximately 75%) and 1,5DNN (33%). 1NN is the compound with the strongest genotoxicity, with 9NA being approximately 40 times less potent than the former and 2NF and 1,5DNN approximately 333 times less potent than 1NN. The evidence indicating that the major effect observed in this study is an increased frequency of mitotic recombination emphasizes another hazard that could be associated to NPAHs--the increment in homologous recombination (HR).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2008.03.014 | DOI Listing |
Cell Mol Life Sci
January 2025
Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China.
Non-small cell lung cancer (NSCLC) has emerged as one of the most prevalent malignancies worldwide. N6-methyladenosine (mA) methylation, a pervasive epigenetic modification in long noncoding RNAs (lncRNAs), plays a crucial role in NSCLC progression. Here, we report that mA modification and the expression of the lncRNA stem cell inhibitory RNA transcript (SCIRT) was significantly upregulated in NSCLC tissues and cells.
View Article and Find Full Text PDFInt J Gynecol Pathol
January 2025
Department of Pathology and Immunology, Washington University.
High-grade serous carcinomas (HGSCs) with homologous recombination deficiency (HRD) respond favorably to platinum therapy and poly ADP ribose polymerase (PARP) inhibitors. Mutations in BRCA1 and BRCA2 commonly cause HRD and have been associated with Solid, pseudoEndometrioid, and Transitional-like (SET-like) histology. Mutations in other homologous recombination repair (HRR) genes as well as epigenetic changes can also result in HRD; however, morphologic correlates have not been well-explored in these cases.
View Article and Find Full Text PDFNon-crossover gene conversion is a type of meiotic recombination characterized by the non-reciprocal transfer of genetic material between homologous chromosomes. Gene conversions are thought to occur within relatively short tracts of DNA, estimated to be in the order of 100-1,000 bp in humans. However, the number of observable gene conversion tracts per study has so far been limited by the use of pedigree or sperm-typing data to detect gene conversion events.
View Article and Find Full Text PDFDNA double strand breaks (DSBs) are widely considered the most cytotoxic DNA lesions occurring in cells because they physically disrupt the connectivity of the DNA double helix. Homologous recombination (HR) is a high-fidelity DSB repair pathway that copies the sequence spanning the DNA break from a homologous template, most commonly the sister chromatid. How both DNA ends, and the sister chromatid are held in close proximity during HR is unknown.
View Article and Find Full Text PDFAnim Reprod
January 2025
Faculdade de Zootecnia e Engenharia de Alimentos - FZEA, Universidade de São Paulo - USP, Pirassununga, SP, Brasil.
Somatic cell nuclear transfer (SCNT), or cloning, is used to reprogram cells and generate genetically identical embryos and animals. However, the cloning process is inefficient, limiting its application to producing valuable animals. In swine, cloning is mainly utilized to produce genetically modified animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!