Micelle-supported gold composites with a polystyrene core and a poly(4-vinyl pyridine)/Au shell are synthesized using NaBH(4) to reduce a mixture of micelle and HAuCl(4) in acidic aqueous solution (pH approximately 2). The template micelle with a polystyrene core and a poly(4-vinyl pyridine) shell is formed by self-assembly of block copolymer polystyrene-block-poly(4-vinyl pyridine). The gold nanoparticles coated onto the surfaces of the composites possess an average diameter of about 15 nm. The composites are applied to catalyze the reduction of p-nitrophenol in the presence of NaBH(4), and the results indicate that the kinetic constant of the reaction increases when the composite concentration and the reaction temperature increase. In addition, research results also indicate that composites with high content of gold show higher catalytic activity and higher catalytic efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2008.03.029 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
The development of intelligent nanotheranostic technology that integrates diagnostic and therapeutic functions holds great promise for personalized nanomedicine. However, most of the nanotheranostic agents exhibit "always-on" properties and do not involve an amplification step, which may largely limit imaging contrast and restrict therapeutic efficacy. Herein, we construct a novel nanotheranostic platform (Hemin/DHPs/PDA@CuS nanocomposite) by assembling DNA hairpin probes (DHPs) and hemin on the surface of PDA@CuS nanosheets that enables amplified fluorescence imaging and activatable chemodynamic therapy (CDT) of tumors.
View Article and Find Full Text PDFSci China Life Sci
January 2025
Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Harvard University, Rowland Institute at Harvard, 02138, Cambridge, UNITED STATES OF AMERICA.
The dynamic response of heterogeneous catalytic materials to their environment opens a wide variety of possible surface states which may have increased catalytic activity. In this work, we find that it is possible to generate a surface state with increased catalytic activity over metallic 2nm Pt nanoparticles by performing a thermal treatment of the CO*-covered Pt catalyst. This state is characterised by its ability to oxidise CO to CO2 at room temperature.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan.
We fabricated Co-based catalysts by the low-temperature thermal decomposition of R-Co intermetallics (R = Y, La, or Ce) to reduce the temperature of ammonia cracking for hydrogen production. The catalysts synthesized are nanocomposites of Co/RO with a metal-rich composition. In the Co/LaO catalyst derived from LaCo, Co nanoparticles of 10-30 nm size are enclosed by the LaO matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!