Respiratory Syncytial Virus (RSV) infection is an important cause of severe infant bronchiolitis, partly due to lower airway inflammation orchestrated by virus-induced chemokine secretion. Chemokine receptors may therefore be therapeutic targets. We investigated RSV-induced chemokine receptor (CCR) 1, 2 and 5 surface expressions in a cellular model and in infants. RSV infection increased human monocytic CCR1, 2 and 5 expression, as assessed by FACS, via replication-dependent mechanisms. CCR1 and CCR5 levels peaked at 36 h and CCR2 levels at 48 h. Monocytes from infants with RSV-bronchiolitis significantly increased CCR1 expression after ex vivo RSV infection compared to controls. Expression of CCR5 also increased, and correlated with CCR1 expression (r=0.78, p<0.0001). CCR1 upregulation correlated with disease severity markers. Monocyte CCR1 receptors were functionally active as stimulation resulted in calcium influx. CCR1/5 blocking strategies may be useful in decreasing cellular inflammation in RSV infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clim.2008.03.460 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!