A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving survival by increasing lung edema clearance: is airspace delivery of dopamine a solution? | LitMetric

Improving survival by increasing lung edema clearance: is airspace delivery of dopamine a solution?

Crit Care

Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.

Published: October 2008

In this issue of Critical Care Chamorro-Marin and coworkers provide new evidence that dopamine instilled into airspaces is beneficial in a rat model of ventilator-induced lung injury. This study is important because it is the first to explore the effects of dopamine on survival, albeit short term. The delivery of dopamine into the airspaces in vivo is also novel and builds upon previous studies describing the mechanisms by which dopamine exerts its effect by upregulating active Na+ transport in the lungs. Dopamine appears to increase active Na+ transport via activation of amiloride-sensitive sodium channels and the basolateral Na+/K+-ATPase within minutes, and it has been shown to be effective in normal lungs and several models of lung injury. This information is relevant to current clinical trials exploring the effects of alveolar fluid clearance stimulation in patients with acute lung injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2447562PMC
http://dx.doi.org/10.1186/cc6825DOI Listing

Publication Analysis

Top Keywords

lung injury
12
delivery dopamine
8
active na+
8
na+ transport
8
dopamine
6
improving survival
4
survival increasing
4
lung
4
increasing lung
4
lung edema
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!