Mutations in the COL4A3/COL4A4 genes of type IV collagen account for about 40% of cases of thin basement membrane nephropathy, a condition that is estimated to affect 1% or more of the general population. We recently described 10 Cypriot families with familial hematuria and thin basement membrane nephropathy in the presence of focal segmental glomerulosclerosis, with founder mutations on COL4A3 gene. Seven of the families carried mutation G1334E on haplotype K, and another three carried mutation G871C on haplotype Ky. In this report we performed extension of the haplotypes with additional polymorphic markers, 12 for haplotype K and 22 for haplotype Ky, to estimate the linkage disequilibrium value between the mutation and flanking noncommon markers. Haplotype Ky extended to 13.71 Mb, but we did not attempt further analysis owing to the small number of chromosomes. Haplotype K extended to 3.83 Mb, thereby suggesting that it was a much older event compared to mutation G871C. Mutation G1334E was calculated to be about 5-10 generations old with a possible origin between 1693 and 1818 AD, during the Ottoman ruling of the island. Both mutations are clustered in specific geographic regions with apparently formerly isolated populations, although mutation G1334E has been detected elsewhere on the island. The identification of founder mutations in large families with microscopic hematuria greatly facilitates presymptomatic diagnosis and provides useful information on the history of the population, while it may also assist in association studies in search for disease modifier genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/gte.2007.0110 | DOI Listing |
J Immunother Cancer
January 2025
Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
Background: Concurrent (STK11, KL) mutant non-small cell lung cancers (NSCLC) do not respond well to current immune checkpoint blockade therapies, however targeting major histocompatibility complex class I-related chain A or B (MICA/B), could pose an alternative therapeutic strategy through activation of natural killer (NK) cells.
Methods: Expression of NK cell activating ligands in NSCLC cell line and patient data were analyzed. Cell surface expression of MICA/B in NSCLC cell lines was determined through flow cytometry while ligand shedding in both patient blood and cell lines was determined through ELISA.
Cell
December 2024
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94148, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94115, USA. Electronic address:
Three proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extracellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues.
View Article and Find Full Text PDFAm J Hum Genet
January 2025
Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany; Center for Rare Disease, University of Tübingen, 72076 Tübingen, Germany; Genomics for Health in Africa (GHA), Africa-Europe Cluster of Research Excellence (CoRE).
Inborn errors of selenoprotein expression arise from deleterious variants in genes encoding selenoproteins or selenoprotein biosynthetic factors, some of which are associated with neurodegenerative disorders. This study shows that bi-allelic selenocysteine tRNA-specific eukaryotic elongation factor (EEFSEC) variants cause selenoprotein deficiency, leading to progressive neurodegeneration. EEFSEC deficiency, an autosomal recessive disorder, manifests with global developmental delay, progressive spasticity, ataxia, and seizures.
View Article and Find Full Text PDFJ Dermatol
January 2025
Division of Dermatology, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan.
Nagashima-type palmoplantar keratosis (NPPK) has been shown to represent a form of autosomal recessive palmoplantar keratosis due to biallelic pathological variants of SERPINB7, which encodes a serine protease inhibitor expressed in the epidermis. Approximately 10 years have elapsed since NPPK was demonstrated to be an independent genetic disease, and the most prevalent palmoplantar keratoderma (PPK) in East Asian countries due to a high prevalence of founder mutations in SERPINB7. Since then, it has become evident that biallelic pathological variants of SERPINA12, which encodes a serine protease inhibitor expressed in the epidermis, can also manifest symptoms analogous to those of NPPK.
View Article and Find Full Text PDFDystrophy-associated fer-1-like protein (dysferlin) conducts plasma membrane repair. Mutations in the DYSF gene cause a panoply of genetic muscular dystrophies. We targeted a frequent loss-of-function, DYSF exon 44, founder frameshift mutation with mRNA-mediated delivery of SpCas9 in combination with a mutation-specific sgRNA to primary muscle stem cells from two homozygous patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!