Background: Dendritic cell (DC)-based vaccines have been applied clinically in the setting of cancer, but tumor-associated antigens (TAAs) have not yet been enough identified in various cancers. In this study, we investigated whether preventive vaccination with unpulsed DCs or peptide-pulsed DCs could offer anti-tumor effects against MC38 or BL6 liver tumors.

Methods: Mice were subcutaneously (s.c.) immunized with unpulsed DCs or the recently defined TAA EphA2 derived peptide-pulsed dendritic cells (Eph-DCs) to treat EphA2-positive MC38 and EphA2-negative BL6 liver tumors. Liver mononuclear cells (LMNCs) from treated mice were subjected to (51)Cr release assays against YAC-1 target cells. In some experiments, mice were injected with anti-CD8, anti-CD4 or anti-asialo GM1 antibody to deplete each lymphocyte subsets.

Results: Immunization with unpulsed DCs displayed comparable efficacy against both MC38 and BL6 liver tumors when compared with Eph-DCs. Both DC-based vaccines significantly augmented the cytotoxicity of LMNCs against YAC-1 cells. In vivo antibody depletion studies revealed that NK cells, as well as, CD4+ and CD8+ T cells play critical roles in the anti-tumor efficacy associated with either DC-based modality. Tumor-specific cytotoxic T lymphocyte (CTL) activity was generally higher if mice had received Eph-DCs versus unpulsed DCs. Importantly, the mice that had been protected from MC38 liver tumor by either unpulsed DCs or Eph-DCs became resistant to s.c. MC38 rechallenge, but not to BL6 rechallenge.

Conclusions: These results demonstrate that unpulsed DC vaccines might serve as an effective therapy for treating metastatic liver tumor, for which TAA has not yet been identified.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11029894PMC
http://dx.doi.org/10.1007/s00262-008-0514-5DOI Listing

Publication Analysis

Top Keywords

unpulsed dcs
20
liver tumor
12
bl6 liver
12
metastatic liver
8
dc-based vaccines
8
mc38 bl6
8
liver tumors
8
liver
7
unpulsed
6
dcs
6

Similar Publications

NSCLC, the most common type of lung cancer, is often diagnosed late due to minimal early symptoms. Its high risk of recurrence or metastasis post-chemotherapy makes DC-based immunotherapy a promising strategy, offering targeted cancer destruction, low side effects, memory formation, and overcoming the immune evasive ability of cancers. However, the limited response to DCs pulsed with single antigens remains a significant challenge.

View Article and Find Full Text PDF

Dendritic cells (DC) are professional antigen-presenting cells that activate T cells to kill cancer cells. The extracellular products of DCs have also been reported to perform the same function. In this study, we examined the differentiation of umbilical cord blood monocytes into DCs in the presence of GM-CSF, and interferon (IFN)-α.

View Article and Find Full Text PDF

(1) Background: Dendritic cell (DC) vaccination has shown outstanding achievements in cancer treatment, although it still has some adverse side effects. Vaccination with DC-derived exosomes has been thought to overcome the side effects of the parental DCs. (2) Method: We performed the experiments to check the ability of cryopreserved umbilical cord blood mononuclear cell-derived DCs (cryo CBMDCs) and their exosomes to prime allogeneic T cell proliferation and allogeneic peripheral blood mononuclear cell (alloPBMCs) cytotoxicity against A549 lung cancer cells.

View Article and Find Full Text PDF

Prophylactic dendritic cell vaccination controls pancreatic cancer growth in a mouse model.

Cytotherapy

January 2020

Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA. Electronic address:

Purpose: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths with high recurrence after surgery due to a paucity of effective post-surgical adjuvant treatments. DC vaccines can activate multiple anti-tumor immune responses but have not been explored for post-surgery PDAC recurrence. Intraperitoneal (IP) delivery may allow increased DC vaccine dosage and migration to lymph nodes.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) carries the worst prognosis and caused one of the highest cancer-related mortalities. Dendritic cell (DC) vaccination is a promising cancer immunotherapy; however, the clinical outcomes are often poor. The administration route of DC vaccine can significantly alter the anti-tumor immune response.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!