A novel DNA vaccine was generated using genomic fragments of a pathogen as the source of both the antigen coding and regulatory regions. The constructs, termed subgenomic vaccines (SGVs), incorporated genomic DNA sequences up to 45 kbp that encompass 15-20 different genes. The SGVs were developed to generate vaccines capable of expressing multiple genes from a single construct, which could be of great benefit for commercialization. The unique feature of the SGVs is that genes are expressed from their native promoters rather than heterologous promoters typical of DNA vaccines. SGVs composed of genomic fragments from the DS-DNA virus Herpes Simplex Virus Type 2 (HSV-2) induced HSV-2 specific immune responses following particle-mediated epidermal delivery (PMED) in mice and these responses protected animals from lethal infectious challenge. A second generation SGV (SGV-H2), intended as an HSV-2 therapeutic vaccine, was generated that had five HSV-2 genes and was capable of generating multi-antigenic responses in naïve mice, and enhancing responses in infected animals. When compared with standard single plasmid vaccines, immunization with the SGV-H2 was found to be at least as effective as single plasmids or plasmid mixtures. The activity of the SGV-H2 could be greatly enhanced by co-delivering plasmids expressing E. coli heat labile toxin (LT) or cholera toxin CT as adjuvants as has been found previously for standard single-gene DNA vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.4161/hv.4.1.4876DOI Listing

Publication Analysis

Top Keywords

genomic fragments
12
herpes simplex
8
simplex virus
8
virus type
8
vaccine generated
8
vaccines sgvs
8
dna vaccines
8
vaccines
5
multi-antigenic dna
4
dna immunization
4

Similar Publications

Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces.

View Article and Find Full Text PDF

Background: Clinicopathological studies of Alzheimer's disease (AD) have demonstrated that synaptic or neuronal loss and clinical cognitive decline do not reliably correlate with fibrillar amyloid burden. We created a transgenic mouse model overexpressing Dutch (E693Q) mutant human amyloid precursor protein (APP) driven by the pan-neuronal Thy1 promoter. Accumulation of APP carboxyl-terminal fragments was observed in the brains of these mice, which develop an impaired learning phenotype directly proportional to brain oAβ levels.

View Article and Find Full Text PDF

Background: The common APOE2/E3/E4 polymorphism, the strongest risk factor for Alzheimer's disease (AD), is determined by two-site haplotypes at codons 112 (Cys>Arg) and 158 (Arg>Cys), resulting into six genotypes. Due to strong linkage disequilibrium between the two sites, 3 of the 4 expected haplotypes (E2, E3, E4) have been observed and extensively studied in relation to AD risk. Compared to the most common haplotype of E3 (Cys112 - Arg158), E4 (Arg112 - Arg 158) and E2 (Cys112 - Cys158) haplotypes are determined by a single-point mutation at codons 112 and 158, respectively.

View Article and Find Full Text PDF

Background: New methods developed to estimate when AD biomarkers became abnormal in individuals have shown considerable heterogeneity in amyloid and tau pathology onset age. This work used polygenic scores (PGS) generated from CSF Aβ and ptau GWAS, individual-level genetic data, and estimated tau onset age (ETOA) to identify genetic influences on tau onset beyond APOE.

Method: Participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) with genetic data, CSF biomarkers (Aβ and ptau), and longitudinal [F]Flortaucipir (FTP) tau PET were analyzed (N = 462).

View Article and Find Full Text PDF

Background: This study was to elucidate the impact of blast-induced neurotrauma (BINT) on phosphoproteome networks and cognition in a genetically heterogeneous population of mice (rTg4510) with the human tau P301L mutation linked to Alzheimer's disease-related dementia (ADRD) including frontotemporal dementia.

Method: Mild traumatic brain injury was induced in rTg4510 mice exposed to a single low-density blast (LIB) at an upright position. After assessment of cognitive function by the automated-Home Cage Monitoring (aHCM) system, frontal cortex tissue was collected at 40 days post-injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!