The short-term effect of three broad spectrum fungicides on microbial activity, microbial biomass, soil ergosterol content, and phospholipid fatty acid (PLFA) profiles was studied. A silty clay loam soil was treated separately with captan, chlorothalonil and carbendazim at three different dosages of each fungicide. Chlorothalonil and carbendazim significantly altered soil microbial activity. However, changes in soil microbial biomass were only observed in soil treated with higher dosages of these fungicides. All dosages of fungicides significantly decreased fungal biomass as estimated by soil ergosterol content. PLFA analysis indicated that there was a shift in PLFA pattern. Higher dosages of all three fungicides decreased a straight-chain PLFA 22:0. In addition, soil treated with carbendazim increased cyclopropyl fatty acids. Compared to untreated soil, higher dosages of both captan and chlorothalonil affected PLFA 10Me 16:0, indicating that these fungicides can reduce actinomycetes population. Finally, our results suggest that application of both captan and chlorothalonil decreased Gram-positive to Gram-negative ratio.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/03601230801941675 | DOI Listing |
Front Plant Sci
January 2025
CSIRO, Glen Osmond, Adelaide, SA, Australia.
Improving crop salinity management requires enhanced understanding of salinity responses of leaf and fine-root traits governing resource acquisition, ideally in relation to ion accumulation at intra- or inter-specific levels. We hypothesized that these responses are coupled towards integrated resource conservation for plants under prolonged salt treatment. We tested the hypothesis with a glasshouse experiment on saplings of six contrasting hybrids, subjected to either control or salt treatment (reverse osmosis water versus 3.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
All India Network Project on Soil Biodiversity-Biofertilizers, ICAR-Indian Institute of Soil Science, Bhopal, 462038, India.
This study evaluated a dual management approach to enhance plant-growth by improving soil fertility, reducing pathogenic stress using PGPR that affect phosphorus-transporter (pht) genes. Among 213 maize rhizobacterial isolates, 40 demonstrated the ability to solubilize tri-calcium phosphate, potassium, zinc, and silicon, showing various PGP traits. Nine of these isolates exhibited significant antagonistic activity against the plant pathogens Colletotrichum chlorophyti and Xanthomonas axonopodis.
View Article and Find Full Text PDFNew Phytol
January 2025
North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, FL, 32351, USA.
Ectomycorrhizal fungi (EMF) play a crucial role in facilitating plant nutrient uptake from the soil although inorganic nitrogen (N) can potentially diminish this role. However, the effect of inorganic N availability and organic matter on shaping EMF-mediated plant iron (Fe) uptake remains unclear. To explore this, we performed a microcosm study on Pinus taeda roots inoculated with Suillus cothurnatus treated with +/-Fe-coated sand, +/-organic matter, and a gradient of NHNO concentrations.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
College of Resources and Environment, Henan Agricultural University, Zhengzhou, China.
Multifunctional plant growth-promoting rhizobacteria (PGPR) have garnered significant attention in agricultural applications; however, a few have applied them in crop rotation or intercropping fields. To identify PGPR with strong colonization ability and broad spectrum benefit, we screened strains from the local tobacco rhizosphere and evaluated their growth-promoting effects across various crops and farming systems. In this study, strain L8, identified as , was selected as a multifunctional PGPR capable of producing indole-3-acetic acid (IAA), solubilizing potassium, and mobilizing both organic and inorganic phosphorus.
View Article and Find Full Text PDFFront Genet
January 2025
Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-Region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China.
Introduction: P. Y. Li is a plant used to treat respiratory diseases such as pneumonia, bronchitis, and influenza.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!