An optimized luciferase bioluminescent assay for coenzyme A.

Anal Bioanal Chem

Centro de Investigação em Química (CIQ-UP), Chemistry Department, Faculty of Sciences, University of Porto, R. Campo Alegre 687, 4169-007, Porto, Portugal.

Published: July 2008

A new bioluminescent method for coenzyme A (CoA) quantification is described. It is based on the enzymatic conversion of dehydroluciferyl-adenylate (L-AMP) into dehydroluciferyl-coenzyme A (L-CoA) by firefly luciferase (E.C. 1.13.12.7) (LUC), which causes a flash of light that can be measured in a luminometer. The method was subjected to optimization using experimental design methodologies to obtain optimum values for the concentrations of L-AMP ([L-AMP]), luciferase ([LUC]), ATP ([ATP]) and luciferin ([LH(2)]). This method has a linear response over the range of 0.25-4 microM of CoA, with a limit of detection (LOD) of 0.24 microM and a limit of quantification (LOQ) of 0.80 microM. The assay has a relative standard deviation of about 7%. By coupling this optimized procedure to bioluminescent detection, a sensible and robust method can be obtained for the analysis of CoA.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-008-2117-6DOI Listing

Publication Analysis

Top Keywords

optimized luciferase
4
luciferase bioluminescent
4
bioluminescent assay
4
assay coenzyme
4
coenzyme bioluminescent
4
method
4
bioluminescent method
4
method coenzyme
4
coenzyme coa
4
coa quantification
4

Similar Publications

Development of translationally active cell lysates from different filamentous fungi for application in cell-free protein synthesis.

Enzyme Microb Technol

January 2025

Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, Senftenberg 01968, Germany. Electronic address:

There is an enormous potential for cell-free protein synthesis (CFPS) systems based on filamentous fungi in view of their simple, fast and mostly inexpensive cultivation with high biomass space-time yields and in view of their catalytic capacity. In 12 of the 22 different filamentous fungi examined, in vitro translation of at least one of the two reporter proteins GFP and firefly luciferase was detected. The lysates showing translation of a reporter protein usually were able to synthesize a functional cell-free expressed unspecific peroxygenase (UPO) from the basidiomycete Cyclocybe (Agrocybe) aegerita.

View Article and Find Full Text PDF

Development of a Luciferase Immunosorbent Assay for Detecting Crimean-Congo Hemorrhagic Fever Virus IgG Antibodies Based on Nucleoprotein.

Viruses

December 2024

Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China.

Crimean-Congo hemorrhagic fever (CCHF) is a serious tick-borne disease with a wide geographical distribution. Classified as a level 4 biosecurity risk pathogen, CCHF can be transmitted cross-species due to its aerosol infectivity and ability to cause severe hemorrhagic fever outbreaks with high morbidity and mortality. However, current methods for detecting anti-CCHFV antibodies are limited.

View Article and Find Full Text PDF

DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells.

View Article and Find Full Text PDF

Mechanisms and applications of bacterial luciferase and its auxiliary enzymes.

Arch Biochem Biophys

January 2025

Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. Electronic address:

Bacterial luciferase (LuxAB) catalyzes the conversion of reduced flavin mononucleotide (FMNH⁻), oxygen, and a long-chain aldehyde to oxidized FMN, the corresponding acid and water with concomitant light emission. This bioluminescence reaction requires the reaction of a flavin reductase such as LuxG (in vivo partner of LuxAB) to supply FMNH⁻ for the LuxAB reaction. LuxAB is a well-known self-sufficient luciferase system because both aldehyde and FMNH⁻ substrates can be produced by the associated enzymes encoded by the genes in the lux operon, allowing the system to be auto-luminous.

View Article and Find Full Text PDF

Ratiometric bioluminescent detection of Cu(II) ion based on differences in enzymatic reaction kinetics of two luciferase variants.

Talanta

January 2025

Graduate School of Pharmaceutical Science, Osaka University, Suita, Osaka, 565-0871, Japan; SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki, Osaka, 567-0047, Japan; Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, 565-0871, Japan; Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020, Japan. Electronic address:

Heavy metal contamination in water bodies has raised global concerns due to its significant threats to both public health and ecosystem. Copper (Cu), one of the most widely used metals, is also an essential trace element in physiological systems. Excessive intake of Cu from water can cause toxicity, potentially resulting in serious health risks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!