Analysis of rare messages in cDNA libraries is extremely difficult due to the substantial variations in the abundance of different transcripts in cells and tissues. Therefore, for rare transcript searches and analyses, the generation of equalized (normalized) cDNA is essential. Several cDNA normalization methods have been developed since 1990. A number of these methods have been optimized for the normalization of full-length enriched cDNA, and used in various applications, including transcriptome analysis and functional screening of cDNA libraries. One such procedure (named DSN-normalization) is based on the unique properties of duplex-specific nuclease (DSN) from kamchatka crab and allows the generation of normalized cDNA libraries with a high gene discovery rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/b715110c | DOI Listing |
BMC Genomics
January 2025
College of Biological Science and Food Engineering, Southwest Forestry University, Kunming, Yunnan Province, 650224, China.
Background: WRKY transcription factors (TFs) regulate plant responses to environmental stimuli and development, including flowering. Despite extensive research on different species, their role in the invasive plant Mikania micrantha remains to be explored. The aim of this study was to identify and analyze WRKY genes in M.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is a devastating neurodegenerative disorder with few therapies to treat, mitigate or prevent its onset. Understanding of this disease is predominantly based on research in non-Hispanic Whites (NHW) although AD disproportionately affects African Americans (AA) and Latin Americans (LA), underrepresented in AD research. To address this knowledge gap, the Accelerating Medicine Partnership for Alzheimer's Disease (AMP-AD) Diversity Working Group was launched to generate multi-omics data from post-mortem brain tissue from donors of predominantly AA and LA descent.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India.
Background: Vascular Dementia (VaD) is the second most prevalent cause of dementia, arising from the blockage of blood vessels in the brain. One event responsible for the blockage or narrowing of small blood vessels is transient ischemic attack (TIA), and these changes resolve within 24 hours in humans. The molecular mechanism underlying these changes in recovery in small vessels still needs to be investigated.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Emory University School of Medicine, Atlanta, GA, USA.
Background: The microtubule-associated Tau gene (MAPT) undergoes alternative splicing to produce isoforms with varying combinations of microtubule-binding region (MTBR) repeats (3R, 4R). The MTBR is the predominant region that forms paired helical filaments and neurofibrillary tangles fibrils in disease. Alzheimer's disease (AD) is a mixed Tauopathy containing both 3R and 4R isoforms.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Complex Genetics of Alzheimer's Disease group, VIB-UAntwerp Center for Molecular Neurology, Antwerp, Belgium.
Background: ABCA7, an important risk gene for AD, encodes a transporter implicated in lipid transport and phagocytosis, and its disruptions have been linked to AD pathogenesis. However, the impact of these mutations on AD risk is complex due to their interaction with a multifaceted transcriptional architecture and cell type-specificexpression patterns. This study aims to analyze the intricate patterns of ABCA7 expression across diverse cell types, considering various ABCA7 genotypes in relation to AD patients and non-carrier controls, while also exploring the effects of ABCA7 mutations on transcriptome-wide gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!