Dexamethasone inhibits high glucose-, TNF-alpha-, and IL-1beta-induced secretion of inflammatory and angiogenic mediators from retinal microvascular pericytes.

Invest Ophthalmol Vis Sci

Department of Biological Sciences, Allergan Inc., 2525 Dupont Drive, Irvine, CA 92612, USA.

Published: May 2008

Purpose: To characterize the effects of dexamethasone in human retinal pericytes (HRMPs), monocytes (THP-1), and retinal endothelial cells (HRECs) treated with high glucose, TNF-alpha, or IL-1beta.

Methods: HRMP and HREC phenotypes were verified by growth factor stimulation of intracellular calcium-ion mobilization. Glucocorticoid receptor phosphorylation was assessed with an anti-phospho-Ser(211) glucocorticoid receptor antibody. Secretion of 89 inflammatory and angiogenic proteins were compared in cells incubated with (1) normal (5 mM) or high (25 mM) D-glucose and (2) control medium, TNF-alpha (10 ng/mL), or IL-1beta (10 ng/mL), with or without dexamethasone (1 nM to 1 microM). The proteins were compared by using multianalyte profile testing.

Results: HRMPs and HRECs expressed functional PDGFB-R and VEGFR-2, respectively. Dexamethasone induction of glucocorticoid receptor phosphorylation was dose-dependent in all cell types. High glucose increased secretion of inflammatory mediators in HRMPs, but not in HRECs. Dexamethasone dose dependently inhibited secretion of these mediators in HRMPs. For all cells, TNF-alpha and IL-1beta induced a fivefold or more increase in inflammatory and angiogenic mediators; HRMPs secreted the greatest number and level of mediators. Dexamethasone dose dependently inhibited the secretion of multiple proteins from HRMPs and THP-1 cells, but not from HRECs (IC(50) 2 nM to 1 microM).

Conclusions: High glucose, TNF-alpha, and IL-1beta induced an inflammatory phenotype in HRMPs, characterized by hypersecretion of inflammatory and angiogenic mediators. Dexamethasone at various potencies blocked hypersecretion of several proteins. Pericytes may be a key therapeutic target in retinal inflammatory diseases, including diabetic retinopathy. Inhibition of pathologic mediators may depend on delivering high levels ( approximately 1 microM) of glucocorticoid to the retina.

Download full-text PDF

Source
http://dx.doi.org/10.1167/iovs.07-0273DOI Listing

Publication Analysis

Top Keywords

inflammatory angiogenic
16
secretion inflammatory
12
angiogenic mediators
12
high glucose
12
glucocorticoid receptor
12
mediators hrmps
12
cells hrecs
8
glucose tnf-alpha
8
receptor phosphorylation
8
proteins compared
8

Similar Publications

Purpose: Treatment of severe burn wound injury remains a significant clinical challenge as serious infections/complex repair process and irregulating inflammation response. Human umbilical cord mesenchymal stem cells (hUC-MSCs) have a multidirectional differentiation potential and could repair multiple injuries under appropriate conditions. Poly(L-lysine)-graft-4-hydroxyphenylacetic acid (PLL-g-HPA) hydrogel is an enzyme-promoted biodegradable in hydrogel with good water absorption, biocompatibility and anti-bacterial properties.

View Article and Find Full Text PDF

Surface Bi-vacancy and corona polarization engineered nanosheets with sonopiezocatalytic antibacterial activity for wound healing.

J Mater Chem B

January 2025

Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China.

Piezocatalytic therapy is an emerging therapeutic strategy for eradicating drug-resistant bacteria, but suffers from insufficient piezoelectricity and catalytic active site availability. Herein, Bi-vacancies (BiV) and corona polarization were introduced to BiOBr nanosheets to create a BiOBr-BiVP nanoplatform for piezocatalytic antibacterial therapy. This meticulously tailored strategy strengthens the built-in electric field of nanosheets, enhancing piezoelectric potential and charge density and boosting charge separation and migration efficiency.

View Article and Find Full Text PDF

Background: Rheumatoid arthritis (RA) is a long-term inflammatory autoimmune disease that damages cartilage and synovial membranes while also affecting bones and joints. The aim of the current study was to investigate the antiarthritic effect of gossypin against collagen-induced arthritis (CIA) in rats.

Methods: Intraperitoneal administration of Type II collagen (2 mg/mL) was used to induce arthritis in the rats, followed by oral administration of gossypin (5, 10 and 15 mg/kg) for 28 days.

View Article and Find Full Text PDF

Corneal neovascularization (CorNV) develops under various pathological conditions and is one of the main causes of blindness. Due to that CorNV progression involves multiple steps, anti-vascular endothelial growth factor (VEGF) drugs alone could not sufficiently suppress this process, highlighting an urgent need for an efficient delivery system for the multi-step management of CorNV. In this study, a neutrophil nanovesicle-based eye drop (NCCR) is developed for CorNV therapy that simultaneously inhibits angiogenesis and inflammation, while eliminating pathological cells through chemoexcited photodynamic therapy (PDT).

View Article and Find Full Text PDF

In Vitro Assessment of Chitosan-PEG Hydrogels Enriched with MSCs-Exosomes for Enhancing Wound Healing.

Macromol Biosci

January 2025

Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technicka 3082/12, Brno, 61600, Czech Republic.

Regenerating skin tissue remains a major challenge in medical science, especially due to the risk of scarring and prolonged healing, which becomes even more complicated in people with diabetes. Recent advancements have led to the creation of therapeutic dressings incorporating drug-delivery systems to tackle these issues. Exosomes (Exos) derived from mesenchymal stem cells (MSCs) have gained significant attention for mediating therapy without directly using cells, thanks to their natural anti-inflammatory and tissue repair properties mirroring those of MSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!