Objective: Polydeoxyribonucleotide contains a mixture of nucleotides and interacts with adenosine receptors, stimulating vascular endothelial growth factor expression and wound healing. The purpose of this study was to investigate the effect of polydeoxyribonucleotide on experimental burn wounds.
Design: Randomized experiment.
Setting: Research laboratory at a university hospital.
Subjects: Thermal injury in mice.
Interventions: Mice were immersed in 80 degrees C water for 10 secs to achieve a deep-dermal second-degree burn. Animals were randomized to receive either polydeoxyribonucleotide (8 mg/kg/day intraperitoneally for 14 days) or its vehicle alone (0.9% NaCl solution at 100 microL/day intraperitoneally). On days 7 and 14 the animals were killed. Blood was collected for tumor necrosis factor-alpha measurement; burn areas were used for histologic and immunohistochemical examination, for the evaluation of vascular endothelial growth factor and nitric oxide synthases by Western blot, and for the determination of wound nitric oxide products.
Measurements And Main Results: Polydeoxyribonucleotide increased burn wound re-epithelialization and reduced the time to final wound closure. Polydeoxyribonucleotide improved healing of burn wound through increased epithelial proliferation and maturation of the extracellular matrix as confirmed by fibronectin and laminin immunostaining. Polydeoxyribonucleotide also improved neoangiogenesis as suggested by the marked increase in microvessel density and by the robust expression of platelet-endothelial cell adhesion molecule-1. Furthermore, polydeoxyribonucleotide blunted serum tumor necrosis factor-alpha and enhanced inducible nitric oxide synthase and vascular endothelial growth factor expression and the wound content of nitric oxide products.
Conclusions: Our study suggests that polydeoxyribonucleotide may be an effective therapeutic approach to improve clinical outcomes after thermal injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/CCM.0b013e318170ab5c | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Cardiol Rev
January 2025
From the Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX.
The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.
View Article and Find Full Text PDFJ Liver Cancer
January 2025
Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
Background/aims: Hepatocellular carcinoma (HCC) is a malignant cancer with an increasing incidence worldwide. Although numerous efforts have been made to identify effective therapies for HCC, current strategies have limitations. We present a new approach for targeting L-arginine and argininosuccinate synthetase 1 (ASS1).
View Article and Find Full Text PDFZhonghua Yi Xue Za Zhi
January 2025
Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou510515, China.
To investigate the characteristics of type 2 inflammation in patients with nocturnal asthma, and analyze the improvement of asthma symptoms after the use of inhaled corticosteroids (ICS) combined with different long-acting bronchodilators. Data of 231 asthma patients who first visited the Respiratory and Critical Care Medical Clinic of Nanfang Hospital of Southern Medical University from January 2020 to June 2023 and had positive bronchodilator tests (BDT), were retrospectively analyzed. These patients were divided into nocturnal asthma group and non-nocturnal asthma group based on the presence or absence of nocturnal symptoms.
View Article and Find Full Text PDFBMJ Open
December 2024
Research and Development Center for New Medical Frontiers, Department of Advanced Medicine, Division of Neonatal Intensive Care Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan.
Objectives: Inhaled nitric oxide (iNO) is a known treatment for pulmonary hypertension (PH) associated with bronchopulmonary dysplasia in preterm infants after 7 days of age (postacute phase). However, a consensus regarding the optimal criteria for initiating iNO therapy in this population in the postacute phase is currently lacking. This study, therefore, aimed to identify the criteria for initiating iNO therapy, alongside the associated clinical and echocardiographic findings, in this population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!