Regulator of G protein signaling (RGS) proteins accelerate GTP hydrolysis by Galpha subunits and thus facilitate termination of signaling initiated by G protein-coupled receptors (GPCRs). RGS proteins hold great promise as disease intervention points, given their signature role as negative regulators of GPCRs-receptors to which the largest fraction of approved medications are currently directed. RGS proteins share a hallmark RGS domain that interacts most avidly with Galpha when in its transition state for GTP hydrolysis; by binding and stabilizing switch regions I and II of Galpha, RGS domain binding consequently accelerates Galpha-mediated GTP hydrolysis. The human genome encodes more than three dozen RGS domain-containing proteins with varied Galpha substrate specificities. To facilitate their exploitation as drug-discovery targets, we have taken a systematic structural biology approach toward cataloging the structural diversity present among RGS domains and identifying molecular determinants of their differential Galpha selectivities. Here, we determined 14 structures derived from NMR and x-ray crystallography of members of the R4, R7, R12, and RZ subfamilies of RGS proteins, including 10 uncomplexed RGS domains and 4 RGS domain/Galpha complexes. Heterogeneity observed in the structural architecture of the RGS domain, as well as in engagement of switch III and the all-helical domain of the Galpha substrate, suggests that unique structural determinants specific to particular RGS protein/Galpha pairings exist and could be used to achieve selective inhibition by small molecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2359823 | PMC |
http://dx.doi.org/10.1073/pnas.0801508105 | DOI Listing |
Am J Med Genet A
November 2024
The Steve and Cindy Rasmussen Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA.
Here we describe a neonate exhibiting hypotonia, macrocephaly, renal cysts, and respiratory failure requiring tracheostomy and ventilator support. Genetic analysis via rapid genome sequencing (rGS) identified a loss on chromosome 4 encompassing polycystin-2 (PKD2) and a loss on chromosome 22 encompassing SH3 and Multiple Ankyrin Repeat Domains 3 (SHANK3), indicative of Phelan-McDermid syndrome. Further analysis via traditional karyotyping, Optical Genome Mapping (OGM), and PacBio long-read sequencing revealed a more complex landscape of chromosomal rearrangements in this individual, including a balanced 3;12 translocation, and an unbalanced 17;22 translocation.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Pharmacology & Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA.
Bipolar disorder's etiology involves genetics, environmental factors, and gene-environment interactions, underlying its heterogeneous nature and treatment complexity. In 2020, Forstner and colleagues catalogued 378 sequence variants co-segregating with familial bipolar disorder. A notable candidate was an R59Q missense mutation in the PDZ (PSD-95/Dlg1/ZO-1) domain of RGS12.
View Article and Find Full Text PDFMil Med Res
October 2024
Department of Urology, University College Hospital of London, London, NW1 2BU, UK.
J Thromb Haemost
October 2024
National Institute of Health and Medical Research, National Research Institute for Agriculture, Food and Environment, Research Center for Cardiovascular and Nutrition, Faculty of Medicine, Aix Marseille University, Marseille, France; Reference Center on Constitutional Platelet Disorders, Biogenopole, University Hospital Center Timone, Public Assistance - Hospitals of Marseille, Marseille, France. Electronic address:
Background: Inherited platelet diseases are bleeding disorders characterized by either defects in platelet count or platelet function, the latter being less common and very heterogeneous. Numerous gene variants associated with abnormal receptors, granules, and signaling pathways have been reported. Despite significant advancements in our understanding, many patients still lack a precise diagnosis.
View Article and Find Full Text PDFSignal Transduct Target Ther
October 2024
Department of Experimental Research, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!