Previous work suggested that altered Ca(2+) homeostasis might contribute to dysfunction of nebulin-free muscle, as gene expression analysis revealed that the sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)-inhibitor sarcolipin (SLN) is up-regulated >70-fold in nebulin knockout mice, and here we tested this proposal. We investigated SLN protein expression in nebulin-free and wild-type skeletal muscle, as well as expression of other Ca(2+)-handling proteins. Ca(2+) uptake capacity was determined in isolated sarcoplasmic reticulum vesicles and in intact myofibers by measuring Ca(2+) transients. Muscle contractile performance was determined in skinned muscle activated with exogenous Ca(2+), as well as in electrically stimulated intact muscle. We found profound up-regulation of SLN protein in nebulin-free skeletal muscle, whereas expression of other Ca(2+)-handling proteins was not (calsequestrin and phospholamban) or was minimally (SERCA) affected. Speed of Ca(2+) uptake was >3-fold decreased in sarcoplasmic reticulum vesicles isolated from nebulin-free muscle as well as in nebulin-free intact myofibers. Ca(2+)-activated stress in skinned muscle and stress produced by intact nebulin-free muscle were reduced to a similar extent compared with wild type. Half-relaxation time was significantly longer in nebulin-free compared with wild-type muscle. Thus, the present study demonstrates for the first time that nebulin might also be involved in physiological Ca(2+) handling of the SR-myofibrillar system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2493448PMC
http://dx.doi.org/10.1096/fj.07-104372DOI Listing

Publication Analysis

Top Keywords

sarcoplasmic reticulum
12
skeletal muscle
12
nebulin-free muscle
12
muscle
11
nebulin-free
8
nebulin-free skeletal
8
sln protein
8
muscle well
8
expression ca2+-handling
8
ca2+-handling proteins
8

Similar Publications

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca release from the sarcoplasmic reticulum (SR).

View Article and Find Full Text PDF

Ca/Calmodulin-Dependent Protein Kinase II (CaMKII) Regulates Basal Cardiac Pacemaker Function: Pros and Cons.

Cells

December 2024

Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institute of Health, Baltimore, MD 21224, USA.

The spontaneous firing of the sinoatrial (SA) node, the physiological pacemaker of the heart, is generated within sinoatrial nodal cells (SANCs) and is regulated by a "coupled-clock" pacemaker system, which integrates a "membrane clock", the ensemble of ion channel currents, and an intracellular "Ca clock", sarcoplasmic reticulum-generated local submembrane Ca releases via ryanodine receptors. The interactions within a "coupled-clock" system are modulated by phosphorylation of surface membrane and sarcoplasmic reticulum proteins. Though the essential role of a high basal cAMP level and PKA-dependent phosphorylation for basal spontaneous SANC firing is well recognized, the role of basal CaMKII-dependent phosphorylation remains uncertain.

View Article and Find Full Text PDF

The regulation of calcium signaling within cardiomyocytes is pivotal for maintaining cardiac function, with disruptions in sarcoplasmic reticulum (SR) calcium handling linked to various heart diseases. This review explores the emerging role of microRNAs (miRNAs) in modulating SR calcium dynamics, highlighting their influence on cardiomyocyte maturation, function, and disease progression. We present a comprehensive overview of the mechanisms by which specific miRNAs, such as miR-1, miR-24, and miR-22, regulate key components of calcium handling, including ryanodine receptors, SERCA, and NCX.

View Article and Find Full Text PDF

This study explored the vasodilatory mechanisms of the sodium-glucose cotransporter-2 inhibitor remogliflozin using femoral arteries of rabbits. Remogliflozin dilated femoral arterial rings pre-contracted with phenylephrine in a concentration-dependent manner. Pretreatment with the Ca-sensitive K channel inhibitor (paxilline), the ATP-sensitive K channel inhibitor (glibenclamide), or the inwardly rectifying K channel inhibitor (Ba) did not alter the vasodilatory effect.

View Article and Find Full Text PDF

Crown ethers have been shown to have physiological effects ascribed to their ionophoric properties. However, high levels of toxicity precluded interest in their evaluation as therapeutic agents. We prepared new silacrown analogs of crown ethers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!