The toll-like receptor (TLR) system is expressed in cumulus cells of ovulated cumulus-oocyte complexes (COCs) and is activated by bacterial lipopolysaccharides (LPS). However, the endogenous ligand(s) for the TLRs and the physiological role(s) in ovulated COCs remain to be defined. Based on reports that hyaluronan fragments can activate TLR2 and TLR4 in macrophages, and that ovulated COCs are characterized by a hyaluronan-rich matrix, we cultured ovulated mouse COCs with purified hyaluronan fragments, treated them with purified hyaluronidase or exposed them to sperm as a physiologically relevant source of hyaluronidase. Hyaluronan fragments or hyaluronidase activated the NFkappaB pathway and induced Il6, Ccl4 and Ccl5 mRNA expression within 2 hours. Anti-TLR2 and anti-TLR4 neutralizing antibodies significantly suppressed hyaluronan fragment- and hyaluronidase-induced activation of the NFkappaB pathway and the expression of these genes. When ovulated COCs were cultured with sperm, the expression and secretion of cytokine/chemokine family members were induced in a time-dependent manner that could be blocked by TLR2/TLR4 antibodies or by a hyaluronan-blocking peptide (Pep-1). The chemokines secreted from TLR2/TLR4-stimulated COCs activated cognate chemokine receptors (CCRs) localized on sperm and induced sperm protein tyrosine phosphorylation, which was used as an index of capacitation. Significantly, in vitro fertilization of COC-enclosed oocytes was reduced by the TLR2/TLR4 neutralizing antibodies or by Pep-1. From these results, we propose that TLR2 and TLR4 present on cumulus cells were activated by the co-culture with sperm in a hyaluronan fragment-dependent manner, and that chemokines secreted from COCs induced sperm capacitation and enhanced fertilization, providing evidence for a regulatory loop between sperm and COCs during fertilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.020461 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!