Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This work examines the binding in aqueous solution, through the experimental determination of specific volumes and specific adiabatic compressibility coefficients, of decyltrimethylammonium bromide to lysozyme and to non-charged polymeric particles (which have been specially synthesized by emulsion polymerization). A method was developed to calculate the specific partial properties at infinite dilution and it was shown that a Gibbs-Duhem type equation holds at this limit for two solutes. With this equation, it is possible to relate the behavior of the partial properties along different binding types at a constant temperature. It was found that the first binding type, specific with high affinity, is related to a significant reduction of surfactant compressibility. The second binding type is accompanied by the unfolding of the protein and the third one is qualitatively identical to the binding of the surfactant to non-charged polymeric particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpc.2008.03.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!