Varying the counter-ion is a highly supportive practice in tackling the problem of poor water-solubility of metal complexes of pharmaceutical importance. As a matter of fact, the relevant structural modification may alter the metabolic pathways and possibly the mode of action of a drug. To prove that this does not take place for one of the lead anticancer metal-based developmental compounds, indazolium trans-[RuCl(4)(1H-indazole)(2)] (KP1019), its reactivity toward human serum proteins was assessed under simulated physiological conditions and compared to that of a much more soluble analogue, sodium trans-[RuCl(4)(1H-indazole)(2)] (KP1339). For such kinetic assaying, capillary electrophoresis (CE) interfaced online with inductively coupled plasma mass spectrometry (ICP-MS) to specifically monitor changes in the metal speciation following the formation of ruthenium-protein adducts was applied. The rate constants of interaction with albumin and transferrin were determined at pharmacologically fitting drug-to-protein ratios as on average 0.0319+/-0.0021 min(-1) and 0.0931+/-0.0019 min(-1) (KP1019) and 0.0316+/-0.0018 min(-1) and 0.0935+/-0.0053 min(-1) (KP1339), respectively. The results of this brief study showed that changing from organic to inorganic counter-ion at the stage of formulation could commonly be recommended for improving ruthenium-based drug solubility and bioavailability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2008.04.009DOI Listing

Publication Analysis

Top Keywords

coupled plasma
8
plasma mass
8
mass spectrometry
8
human serum
8
serum proteins
8
application capillary
4
capillary electrophoresis-inductively
4
electrophoresis-inductively coupled
4
spectrometry comparative
4
comparative studying
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!