A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical stimulation of osteoblasts using steady and dynamic fluid flow. | LitMetric

In bone tissue engineering, flow perfusion bioreactors have shown great potential for accelerated production of functional constructs, but bioreactor culture conditions have not been optimized. The goal of this study was to investigate the short-term (1- 49 h) effects of intermittent steady, pulsatile, and oscillatory fluid flow (peak flow rate = 1.0 mL/min) on MC3T3-E1 osteoblast activity within a collagen-glycosaminoglycan scaffold. Bioreactor culture at a continuous low flow rate (0.05 mL/min) was also evaluated. Fluid flow exposure stimulated 8 to 51, 15 to 48, and 1.4 to 2.7 greater cyclooxygenase-2 (COX-2) expression, prostaglandin E2 (PGE2) production, and osteopontin expression, respectively, whereas membrane-associated prostaglandin E synthase-1 was 1.8 greater only under steady flow. Overall, intermittent flow (high flow rate) caused greater stimulation than a continuous low flow rate without a loss in cell number. Pulsatile and oscillatory fluid flow tripled COX-2 expression from 25 to 49 h (p < or =0.04), whereas under steady flow, PGE2 production dropped 52% at 49 h (p = 0.05). These results indicate that intermittent flow is advantageous for mechanically stimulating osteoblasts while maintaining cell viability. In addition, results at 49 h suggest that dynamic (pulsatile and oscillatory) flow may be more stimulatory than steady flow over long-term culture.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.tea.2007.0321DOI Listing

Publication Analysis

Top Keywords

fluid flow
16
flow rate
16
flow
15
pulsatile oscillatory
12
steady flow
12
bioreactor culture
8
oscillatory fluid
8
continuous low
8
low flow
8
cox-2 expression
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!