Introduction: Activator protein (AP)-1 family members play important roles in the development and maintenance of the adult skeleton. Transgenic mice that overexpress the naturally occurring DeltaFosB splice variant of FosB develop severe osteosclerosis. Translation of Deltafosb mRNA produces both DeltaFosB and a further truncated isoform (Delta2DeltaFosB) that lacks known transactivation domains but, like DeltaFosB, induces increased expression of osteoblast marker genes.
Materials And Methods: To test Delta2DeltaFosB's ability to induce bone formation in vivo, we generated transgenic mice that overexpress only Delta2DeltaFosB using the enolase 2 (ENO2) promoter-driven bitransgenic Tet-Off system.
Results: Despite Delta2DeltaFosB's failure to induce transcription of an AP-1 reporter gene, the transgenic mice exhibited both the bone and the fat phenotypes seen in the ENO2-DeltaFosB mice. Both DeltaFosB and Delta2DeltaFosB activated the BMP-responsive Xvent-luc reporter gene and increased Smad1 expression. Delta2DeltaFosB enhanced BMP-induced Smad1 phosphorylation and the translocation of phospho-Smad1 (pSmad1) to the nucleus more efficiently than DeltaFosB and showed a reduced induction of inhibitory Smad6 expression.
Conclusions: DeltaFosB's AP-1 transactivating function is not needed to induce increased bone formation, and Delta2DeltaFosB may act, at least in part, by increasing Smad1 expression, phosphorylation, and translocation to the nucleus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674536 | PMC |
http://dx.doi.org/10.1359/jbmr.080110 | DOI Listing |
Diabetol Int
January 2025
Clinical Research Department, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation at Kobe (FBRI), 6-3-7 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047 Japan.
The prevalence of diabetes has increased rapidly in recent years, and many types of therapeutic agents have been developed. However, the main purpose of these drugs is to lower blood glucose levels, and they are not fundamental solutions. In contrast, our research has been aimed at stimulating and inducing β-cell proliferation in vivo and replenishing β-cells.
View Article and Find Full Text PDFFront Immunol
January 2025
Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, Ulm, Germany.
Background: The complement system is locally activated after joint injuries and leads to the deposition of the terminal complement complex (TCC). Sublytic TCC deposition is associated with phenotypical alterations of human articular chondrocytes (hAC) and enhanced release of inflammatory cytokines. Chronic inflammation is a known driver of chondrosenescence in osteoarthritis (OA).
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA.
Introduction: Iron-mediated cell death (ferroptosis) is a proposed mechanism of Alzheimer's disease (AD) pathology. While iron is essential for basic biological functions, its reactivity generates oxidants which contribute to cell damage and death.
Methods: To further resolve mechanisms of iron-mediated toxicity in AD, we analyzed post mortem human brain and ApoEFAD mice.
J Neuroinflammation
January 2025
Department of Neurology, Division of Neuroimmunology, School of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA.
Chronic innate immune activation in the central nervous system (CNS) significantly contributes to neurodegeneration in progressive multiple sclerosis (MS). Using multiple experimental autoimmune encephalomyelitis (EAE) models, we discovered that NLRX1 protects neurons in the anterior visual pathway from inflammatory neurodegeneration. We quantified retinal ganglion cell (RGC) density and optic nerve axonal degeneration, gliosis, and T-cell infiltration in Nlrx1 and wild-type (WT) EAE mice and found increased RGC loss and axonal injury in Nlrx1 mice compared to WT mice in both active immunization EAE and spontaneous opticospinal encephalomyelitis (OSE) models.
View Article and Find Full Text PDFMol Neurobiol
January 2025
School of Pharmacy, Chengdu Medical College, Chengdu, 610500, PR China.
Alzheimer's disease (AD) is a prominent neurodegenerative disorder affecting the central nervous system in the elderly. Current understanding of AD primarily centers on the gradual decline in cognitive and memory functions, believed to be influenced by factors including mitochondrial dysfunction, β-amyloid aggregation, and neuroinflammation. Emerging research indicates that neuroinflammation plays a significant role in the development of AD, with the inflammasome potentially mediating inflammatory responses that contribute to neurodegeneration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!