A general method for chemical surface functionalization of parylene C [PC, (para-CH2-C6H3Cl-CH2-)n] films is reported. Friedel-Crafts acylation is used to activate the surface of the PC film, and the resulting carbonyl groups are then used to form a range of different organic functional groups to the surface of the parylene film, including alcohol, imine, thiol, phthalimide, amine, and maleimide. The presence of these functional groups on the parylene surface was confirmed by Fourier transform infrared spectroscopy. Static water drop contact angle measurements were also used to demonstrate the changes in hydrophilicity of the PC film surface, consistent with each of the surface modifications. Enhanced metal (gold) adhesion was achieved by anchoring a thiol group onto the acylated surface of PC film. Acylation of parylene with 2-chloropropionyl chloride gave a surface bound chloropropionyl group. Grafting of poly-N-isopropylacrylamide (pNIPAM) onto the chloropropionyl substituted PC film via atom transfer radical polymerization (ATRP) was carried out. The grafted pNIPAM on the parylene surface leads to temperature-dependent cellular tissue adhesion on the PC film.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.31929DOI Listing

Publication Analysis

Top Keywords

surface
9
tissue adhesion
8
surface film
8
functional groups
8
parylene surface
8
parylene
6
film
6
improvement metal
4
metal tissue
4
adhesion surface-modified
4

Similar Publications

Automatic 4D mitral valve segmentation from transesophageal echocardiography: a semi-supervised learning approach.

Med Biol Eng Comput

January 2025

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.

Performing automatic and standardized 4D TEE segmentation and mitral valve analysis is challenging due to the limitations of echocardiography and the scarcity of manually annotated 4D images. This work proposes a semi-supervised training strategy using pseudo labelling for MV segmentation in 4D TEE; it employs a Teacher-Student framework to ensure reliable pseudo-label generation. 120 4D TEE recordings from 60 candidates for MV repair are used.

View Article and Find Full Text PDF

Impact of backpack load during walking: an EMG and biomechanical analysis.

Med Biol Eng Comput

January 2025

Biomedical Engineering, Bahçeşehir University, Çırağan Caddesi Osmanpaşa Mektebi Sokak No: 4-6 Beşiktaş, İstanbul, 34353, Turkey.

This study aims to understand the impact of backpack carriage, a regular activity for many, on back muscles and joint mobility during walking so that clinicians can develop strategies or products to ensure individuals' safety and well-being. Surface electromyography (EMG) and XSENS Awinda motion capture systems were used to analyze the effects of carrying a backpack (12% of body weight) on erector spinae and multifidus muscles, as well as spinal, hip, knee, and ankle joints. Subjects walked at 4 km/h on flat and inclined surfaces.

View Article and Find Full Text PDF

Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.

View Article and Find Full Text PDF

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Anatomical Characterization of the Motor Branch to the Fourth Lumbrical: A Cadaver Study.

J Hand Surg Am

January 2025

Division of Plastic and Reconstructive Surgery, Department of Surgery, University of Florida, Gainesville, FL.

Purpose: The branching pattern of the deep motor branch of the ulnar nerve (DBUN) in the hand is complex. The anatomy of the motor branch innervating the fourth lumbrical (4L), where paralysis results in a claw hand deformity after ulnar nerve injury, is not well defined. This cadaver study focused on mapping and defining anatomical landmarks in relation to the motor branch to the 4L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!