A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Transcriptional profile of right ventricular tissue during acute pulmonary embolism in rats. | LitMetric

Transcriptional profile of right ventricular tissue during acute pulmonary embolism in rats.

Physiol Genomics

Department of Emergency Medicine, James G. Cannon Research Center, Carolinas Medical Center, Charlotte, NC 28203, USA.

Published: June 2008

AI Article Synopsis

  • Acute pulmonary embolism (PE) is a significant cause of cardiovascular mortality in the U.S., often leading to pulmonary hypertension (PH) and damage to the right ventricle (RV).
  • Researchers investigated gene expression changes in RV tissue during acute PE using DNA microarrays, confirming results with real-time RT-PCR.
  • They found upregulation of various inflammatory chemokines and a notable shift in metabolic pathway expression, indicating a transition towards a "fetal gene program" in cardiac physiology.

Article Abstract

Acute pulmonary embolism (PE) is the third leading cause of cardiovascular death in the United States. Moderate to severe PE can cause pulmonary arterial hypertension (PH) with resultant right ventricular (RV) heart damage. The mechanisms leading to RV failure after PE are not well defined, although it is becoming clear that PH-induced inflammatory responses are involved. We previously demonstrated profound neutrophil-mediated inflammation and RV dysfunction during PE that was associated with increased expression of several chemokine genes. However, a complete assessment of transcriptional changes in RVs during PE is still lacking. We have now used DNA microarrays to assess the alterations in gene expression in RV tissue during acute PE/PH in rats. Key results were confirmed with real-time RT-PCR. Nine CC-chemokine genes (CCL-2, -3, -4, -6, -7, -9, -17, -20, -27), five CXC-chemokine genes (CXCL-1, -2, -9, -10, -16), and the receptors CCR1 and CXCR4 were upregulated after 18 h of moderate PE, while one C-chemokine (XCL-1) and one CXC-chemokine (CXCL-12) were downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated increased expression of many inflammatory genes. There was also a major shift in the expression of components of metabolic pathways, including downregulation of fatty acid transporters and oxidative enzymes, a change in glucose transporters, and upregulation of stretch-sensing and hypoxia-inducible transcription factors. This pattern suggests an extensive shift in cardiac physiology favoring the expression of the "fetal gene program."

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiolgenomics.00261.2007DOI Listing

Publication Analysis

Top Keywords

tissue acute
8
acute pulmonary
8
pulmonary embolism
8
increased expression
8
expression
5
genes
5
transcriptional profile
4
profile ventricular
4
ventricular tissue
4
embolism rats
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!