Macromolecular electron microscopy (EM) deals with macromolecular complexes and their placement within the cell-linking the molecular and cellular worlds as a bridge between atomic-resolution X-ray crystallographic or NMR studies and lower resolution light microscopy. The amount of specimen required is typically 10(2) to 10(3) times less than for X-ray crystallography or NMR. Electron micrographs of frozen-hydrated specimens portray native structures. Computer averaging yields enhanced images with reduced noise. Three-dimensional reconstructions may be computed from multiple views. Under favorable circumstances, resolutions of 7 to 10 A are achieved. Fitting atomic-resolution coordinates of components into three-dimensional density maps gives pseudo-atomic models of a complex's structure and interactions. Time-resolved experiments describe conformational changes. Electron tomography allows reconstruction of pleiomorphic complexes and sub-cellular structures. Electron crystallography has produced near-atomic resolution models of two-dimensional arrays, notably of membrane proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/0471140864.ps1702s42 | DOI Listing |
J Agric Food Chem
January 2025
State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China.
A total of 38 new benzohydrazide derivatives bearing the 4-aminoquinazoline moiety were designed and synthesized based on the active subunit combination approach and tested in detail for their inhibition activities against eight agricultural phytopathogenic fungi. The bioassay results indicated that many of the synthesized compounds exhibited extraordinary fungicidal activities in vitro against the tested fungi. For example, compounds , , , and had EC (half-maximal effective concentration) values of 0.
View Article and Find Full Text PDFCirc Heart Fail
January 2025
Aswan Heart Center, Magdi Yacoub Heart Foundation, Egypt (A.M.I., M.R., A. Elsawy, M.H., S.H., W.E., A. Elaithy, A. Elguindy, A. Afifi, Y.A., M.Y.).
Background: Changes in the phenotype and genotype in hypertrophic cardiomyopathy (HCM) are thought to involve the myocardium as well as extracardiac tissues. Here, we describe the structural and functional changes in the ascending aorta of obstructive patients with HCM.
Methods: Changes in the aortic wall were studied in a cohort of 101 consecutive patients with HCM undergoing myectomy and 9 normal controls.
Front Mol Biosci
January 2025
Medical Laboratory, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
Olfactory receptors, classified as G-protein coupled receptors (GPCRs), have been a subject of scientific inquiry since the early 1950s. Historically, investigations into the sensory mechanisms of olfactory receptors were often confined to behavioral characteristics in model organisms or the expression of related proteins and genes. However, with the development of cryo-electron microscopy techniques, it has gradually become possible to decipher the specific structures of olfactory receptors in insects and humans.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, National Tsing Hua University Hsinchu 300044 Taiwan
PbZrTiO cubes with tunable sizes and cuboids have been hydrothermally synthesized. PbZrTiO cubes with three different Zr : Ti atomic percentages were also prepared. Analysis of synchrotron X-ray diffraction (XRD) patterns reveals the presence of two lattice components for these samples.
View Article and Find Full Text PDFGraphene 2D Mater
June 2024
NanoSafe, Inc., Blacksburg, VA 24060, USA.
Five commercially available cut-resistant gloves were sourced from four different worldwide manufacturers which were advertised to contain graphene. A method was developed to assess the fibers composing each glove, including dissolution of the constituent fibers using sulfuric acid or liquid paraffin at elevated temperature, to extract and analyze particle additives. Scanning electron microscopy with energy-dispersive X-ray spectroscopy was applied to fibers and extracted particles for morphological and elemental analysis; Raman spectroscopy was applied to discern the composition of carbonaceous materials for the ultimate purpose of identifying any graphenic additives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!