Nucleoside phosphoramidites are the most widely used building blocks in contemporary solid-phase synthesis of oligonucleotides. The accurate molecular weight measurements of such molecules, which are acid-labile compounds, may be easily determined by mass spectrometry using a matrix system, triethanolamine/NaCl, on a liquid secondary ion mass spectrometer (LSIMS) or fast-atom bombardment (FAB) MS equipped with a double-focusing mass spectrometer. The present method rapidly and easily measures the accurate molecular weights of various phosphoramidites as adduct ions [M+Na]+ with an average mass error smaller than 0.4 ppm, allowing determination of the formulas of the phosphoramidites in place of elemental analysis. Further, it was found that intensities of molecular-related ions could be enhanced to the highest degree by adjustment of the molar ratio of phosphoramidite and NaCl, fixing the amount of triethanolamine on LSIMS, making the present method a powerful tool for identification of phosphoramidites by mass spectrometry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/0471142700.nc1011s26DOI Listing

Publication Analysis

Top Keywords

accurate molecular
8
mass spectrometry
8
mass spectrometer
8
mass
6
phosphoramidites
5
mass determination
4
determination phosphoramidites
4
phosphoramidites nucleoside
4
nucleoside phosphoramidites
4
phosphoramidites building
4

Similar Publications

Caution when using network partners for target identification in drug discovery.

HGG Adv

January 2025

Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada; 5 Prime Sciences Inc, Montréal, Quebec, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Twin Research, King's College London, London, UK. Electronic address:

Identifying novel, high-yield drug targets is challenging and often results in a high failure rate. However, recent data indicates that leveraging human genetic evidence to identify and validate these targets significantly increases the likelihood of success in drug development. Two recent papers from Open Targets claimed that around half of FDA-approved drugs had targets with direct human genetic evidence.

View Article and Find Full Text PDF

JC polyomavirus (JCPyV) establishes a persistent, asymptomatic kidney infection in most of the population. However, JCPyV can reactivate in immunocompromised individuals and cause progressive multifocal leukoencephalopathy (PML), a fatal demyelinating disease with no approved treatment. Mutations in the hypervariable non-coding control region (NCCR) of the JCPyV genome have been linked to disease outcomes and neuropathogenesis, yet few metanalyses document these associations.

View Article and Find Full Text PDF

Pathophysiology and Treatment of Psoriasis: From Clinical Practice to Basic Research.

Pharmaceutics

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China.

Psoriasis, a chronic inflammatory dermatosis, represents a significant clinical challenge due to its complex pathogenesis and the limitations of existing therapeutic strategies. Current psoriasis diagnoses are primarily clinician-dependent, with instrumental diagnostics serving as adjuncts. Ongoing research is progressively deciphering its molecular underpinnings; the future of psoriasis diagnostics may involve genetic and immunological profiling to pinpoint biomarkers, enabling more accurate and timely interventions.

View Article and Find Full Text PDF

Background/objectives: The DNA methylation of neonatal cord blood can be used to accurately estimate gestational age. This is known as epigenetic gestational age. The greater the difference between epigenetic and chronological gestational age, the greater the association with an inappropriate perinatal fetal environment and development.

View Article and Find Full Text PDF

Improving Sensitivity and Resolution of Dendrimer Identification in MALDI-TOF Mass Spectrometry Using Varied Matrix Combinations.

Polymers (Basel)

January 2025

Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile.

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a well-known technique for polymer analysis, particularly for determining the molecular weight and structural details of dendrimers. In this study, we evaluated the performance of various matrices, such as 2',4',6'-trihydroxyacetophenone (THAP), α-cyano-4-hydroxycinnamic acid (HCCA), and sinapinic acid (SA), and their combinations, on the sensitivity and resolution of poly(amidoamine) (PAMAM) dendrimers of different generations (G3.0, G4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!