Behavioral tasks must be evaluated in terms of the cognitive functions they require in order to be performed. All of the tasks described in this chapter can be used with each of four experimental manipulations: stimulation of a single brain region by drugs or small electrical current, impairment of normal function by production of a lesion or administration of appropriate pharmacological agents, recording of brain activity during the performance of a specific behavioral task, or behavioral phenotyping of transgenic and knockout mice for genes expressed in specific brain regions. This unit describes protocols for the radial arm maze task and the water maze task, both of which require intact spatial memory abilities.

Download full-text PDF

Source
http://dx.doi.org/10.1002/0471142301.ns0805as26DOI Listing

Publication Analysis

Top Keywords

spatial memory
8
radial arm
8
arm maze
8
water maze
8
maze task
8
assessment spatial
4
memory radial
4
maze
4
maze morris
4
morris water
4

Similar Publications

SPATIAL MEMORY RECOVERY IN AGED MALE RATS TREATED WITH LEUPROLIDE ACETATE, A GNRH AGONIST.

Acta Endocrinol (Buchar)

January 2025

Universidad Autónoma de Aguascalientes, Centro de Ciencias Básicas, Department of Physiology and Pharmacology.

Context: Studies indicate a decrease in spatial memory across species as they age. Moreover, consistent administration of Gonadotropin-releasing hormone (GnRH) improves learning abilities in older rats that have undergone gonadectomy.

Objective: The aim of this study was to investigate the effects of the GnRH agonist, leuprolide acetate (LA) on spatial memory in aged intact male rats and the expression of proteins associated with hippocampal plasticity.

View Article and Find Full Text PDF

Traumatic brain injury is widely viewed as a risk factor for dementia, but the biological mechanisms underlying this association are still unclear. In previous studies, traumatic brain injury has been associated with the hallmark pathologies of Alzheimer's disease, i.e.

View Article and Find Full Text PDF

Ginkgolide B as a biopsychosocial treatment salvages repeated restraint stress-induced amygdalar anomalies in mice.

IBRO Neurosci Rep

June 2025

Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria.

From preclinical and clinical findings, it has been shown that the amygdala is a critical mediator of stress and primary target for stress effects in the brain. We investigated the neuroprotective effect of Ginkgolide B (GB) in repeated restraint stress-induced behavioral deficit and amygdalar inflammation in mice. Mice were orally pre-treated with GB 20 mg/kg 1 h prior to 4 h restraint stress for 21 consecutive days.

View Article and Find Full Text PDF

CD4-Derived Double-Negative T Cells Ameliorate Alzheimer's Disease-Like Phenotypes in the 5×FAD Mouse Model.

CNS Neurosci Ther

January 2025

State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

Background: Alzheimer's disease (AD) is a debilitating neurodegenerative disorder that is difficult to predict and is typically diagnosed only after symptoms manifest. Recently, CD4 T cell-derived double-negative T (DNT) cells have shown strong immuno-regulatory properties in both in vitro and in vivo neuronal inflammation studies. However, the effectiveness of DNT cells in treating on AD are not yet fully understood.

View Article and Find Full Text PDF

Deep learning has revolutionized electroencephalograph (EEG) decoding, with convolutional neural networks (CNNs) being a predominant tool. However, CNNs struggle with long-term dependencies in sequential EEG data. Models like long short-term memory and transformers improve performance but still face challenges of computational efficiency and long sequences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!