This unit provides a set of protocols for introducing recombinant genes into normal, injured, and atherosclerotic arteries. The protocols include animal preparation, surgical techniques, and delivery systems. Protocols describe gene delivery to normal, injured, and stented porcine iliofemoral arteries, employing a double balloon infusion catheter to deliver the vector. Another basic protocol describes gene delivery to atherosclerotic arteries using a hyperlipidemic double-injury rabbit model, and requires surgical exposure of the artery and instillation of the gene vector via a catheter. Additional protocols describe gene delivery to normal and injured murine carotid and femoral arteries. An Alternate Protocol describes a percutaneous method for arterial gene delivery. These protocols may be adapted to deliver genes to either injured or noninjured atherosclerotic arteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/0471142905.hg1301s31 | DOI Listing |
Brief Bioinform
November 2024
Department of Automation, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
Studying the changes in cellular transcriptional profiles induced by small molecules can significantly advance our understanding of cellular state alterations and response mechanisms under chemical perturbations, which plays a crucial role in drug discovery and screening processes. Considering that experimental measurements need substantial time and cost, we developed a deep learning-based method called Molecule-induced Transcriptional Change Predictor (MiTCP) to predict changes in transcriptional profiles (CTPs) of 978 landmark genes induced by molecules. MiTCP utilizes graph neural network-based approaches to simultaneously model molecular structure representation and gene co-expression relationships, and integrates them for CTP prediction.
View Article and Find Full Text PDFACS Nano
January 2025
Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.
As natural agonists of the stimulator of interferon genes (STING) protein, cyclic dinucleotides (CDNs) can activate the STING pathway, leading to the expression of type I interferons and various cytokines. Efficient activation of the STING pathway in antigen-presenting cells (APCs) and tumor cells is crucial for antitumor immune response. Tumor-derived exosomes can be effectively internalized by APCs and tumor cells and have excellent potential to deliver CDNs to the cytoplasm of APCs and tumor cells.
View Article and Find Full Text PDFBioTech (Basel)
January 2025
Valent BioSciences, Biorational Research Center, 1910 Innovation Way, Suite 100, Libertyville, IL 60048, USA.
Organisms from the genus feature actinobacteria with complex developmental cycles and a great ability to produce a variety of natural products. These soil bacteria produce more than 2/3 of antibiotics used in medicine, and a large variety of bioactive compounds for industrial, medical and agricultural use. Although spp.
View Article and Find Full Text PDFBiotechnol Prog
January 2025
Department of Life Sciences, Albany College of Pharmacy and Health Sciences, Albany, New York, USA.
Cell and gene therapy (CGT) products are emerging and innovative biopharmaceuticals that hold promise for treating diseases that are otherwise beyond the scope of conventional medicines. The evolution of CGT from a research idea to a promising therapeutic product is due to the complementary advancements across various scientific disciplines. First, the innovations and advancements in gene editing and delivery technology have provided fundamental tools to manipulate genes and cells for therapeutic pursuits.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Malaysia.
Recurrent spontaneous seizures with an extended epileptic discharge are the hallmarks of epilepsy. At present, there are several available anti-epileptic drugs (AEDs) in the market. Still no adequate treatment for epilepsy treatment is available.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!