The metabolomics goal, the unbiased relative quantification of all metabolites in a biological system, still lacks a universal analytical approach. In the LC-MS line of approach, one of the major problems encountered is the polar nature of a large group of (plant) metabolites. Here, we investigate the potential of hydrophilic interaction chromatography (HILIC) and compare its qualities with extended polarity RP chromatography. Two opposite LC phase compositions (Atlantis dC18 vs. TSKgel Amide-80) are compared in a plant metabolomics setting. Both performed equally well with regard to retentive capacities, but variation in peak area was about 5% higher for the HILIC approach. Focussing on matrix effects (ME) on the other hand, it was observed that this well-known problem in RP LC-MS metabolomics was not reduced on using hydrophilic interaction chromatography.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.200700539 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!