Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Signal processing in bacterial chemotaxis relies on large sensory complexes consisting of thousands of protein molecules. These clusters create a scaffold that increases the efficiency of pathway reactions and amplifies and integrates chemotactic signals. The cluster core in Escherichia coli comprises a ternary complex composed of receptors, kinase CheA, and adaptor protein CheW. All other chemotaxis proteins localize to clusters by binding either directly to receptors or to CheA. Here, we used fluorescence recovery after photobleaching (FRAP) to investigate the turnover of chemotaxis proteins at the cluster and their mobility in the cytoplasm. We found that cluster exchange kinetics were protein-specific and took place on several characteristic time scales that correspond to excitation, adaptation, and cell division, respectively. We further applied analytical and numerical data fitting to analyze intracellular protein diffusion and to estimate the rate constants of cluster equilibration in vivo. Our results indicate that the rates of protein turnover at the cluster have evolved to ensure optimal performance of the chemotaxis pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2359816 | PMC |
http://dx.doi.org/10.1073/pnas.0710611105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!