A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nitric oxide donor, (+/-)-S-nitroso-N-acetylpenicillamine, stabilizes transactive hypoxia-inducible factor-1alpha by inhibiting von Hippel-Lindau recruitment and asparagine hydroxylation. | LitMetric

We have confirmed that the NO donor (+/-)-S-nitroso-N-acetylpenicillamine (SNAP) stabilizes the transactive form of hypoxia-inducible factor-1alpha (HIF-1alpha), leading to the induction of HIF-1alpha target genes such as vascular endothelial growth factor and carbonic anhydrase 9. Activation of HIF-1alpha should require inhibition of the dual system that keeps it inactive. One is ubiquitination, which is triggered by hydroxylation of HIF-1alpha-proline and the subsequent binding of E3 ubiquitin ligase, the von Hippel Lindau (VHL) protein. The other is hydroxylation of HIF-1alpha-asparagine, which reduces the affinity of HIF-1alpha for its coactivator, cAMP responsive element binding protein/p300. We examined the effects of the NO donor SNAP on proline and asparagine hydroxylation of HIF-1alpha peptides by measuring the activities of the corresponding enzymes, HIF-1alpha-specific proline hydroxylase 2 (PHD2) and the HIF-1alpha-specific asparagine hydroxylase, designated factor inhibiting HIF-1alpha (FIH-1), respectively. We found that the SNAP did not prevent PHD2 from hydroxylating the proline of HIF-1alpha. Instead, it blocked the interaction between VHL and the proline-hydroxylated HIF-1alpha, but only when the reducing agents Fe(II) and vitamin C were limiting. The fact that the absence of cysteine 520 of HIF-1alpha abolishes its responsiveness to SNAP suggests that this residue mediates the inhibition by SNAP of the interaction between VHL and HIF-1alpha, presumably by S-nitrosylation of HIF-1alpha. Un-like PHD2, asparagine hydroxylation by FIH-1 was directly inhibited by SNAP, but again only when reducing agents were limiting. Substitution of cysteine 800 of HIF-1alpha with alanine failed to reverse the inhibitory effects of SNAP on asparagine hydroxylation, implying that FIH-1, not its substrate HIF-1alpha, is inhibited by SNAP.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.108.045278DOI Listing

Publication Analysis

Top Keywords

asparagine hydroxylation
16
hif-1alpha
13
donor +/--s-nitroso-n-acetylpenicillamine
8
stabilizes transactive
8
hypoxia-inducible factor-1alpha
8
snap
8
interaction vhl
8
reducing agents
8
inhibited snap
8
hydroxylation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!