The anti-CD20 monoclonal antibody (mAb) rituximab is now routinely used for the treatment of non-Hodgkins lymphoma and is being examined in a wide range of other B-cell disorders, such as rheumatoid arthritis. Despite intensive study, the mechanism of action still remains uncertain. In the current study, anti-CD20 mAb-induced calcium signaling was investigated. Previously, we grouped anti-CD20 mAbs into Type I (rituximab-like) and Type II (B1-like) based upon various characteristics such as their ability to induce complement activation and redistribute CD20 into detergent-insoluble membrane domains. Here we show that only Type I mAbs are capable of inducing a calcium flux in B cells and that this is tightly correlated with the expression of the B-cell antigen receptor (BCR). Inhibitor analysis revealed that the signaling cascade employed by CD20 was strikingly similar to that utilized by the BCR, with inhibitors of Syk, Src, and PI3K, but not EGTA, p38, or ERK1/2, completely ablating calcium flux. Furthermore, binding of Type I but not Type II mAbs caused direct association of CD20 with the BCR as measured by FRET and resulted in the phosphorylation of BCR-specific adaptor proteins BLNK and SLP-76. Crucially, variant Ramos cells lacking BCR expression but with unchanged CD20 expression were completely unable to induce calcium flux following ligation of CD20. Collectively, these data indicate that CD20 induces cytosolic calcium flux through its ability to associate with and "hijack" the signaling potential of the BCR.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M708459200DOI Listing

Publication Analysis

Top Keywords

calcium flux
20
cytosolic calcium
8
antigen receptor
8
type mabs
8
cd20
7
calcium
6
flux
5
type
5
bcr
5
induction cytosolic
4

Similar Publications

Constitutive surface expression of the thromboxane A2 receptor is Pim kinase-dependent.

J Thromb Haemost

January 2025

Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom. Electronic address:

Background: The thromboxane A2 receptor (TPαR) plays an important role in the amplification of platelet responses during thrombosis. Receptor activity is regulated by internalization and receptor desensitization. The mechanism by which constitutive surface expression of the TPαR is regulated is unknown.

View Article and Find Full Text PDF

E3 ligase substrate adaptor SPOP fine-tunes the UPR of pancreatic β cells.

Genes Dev

December 2024

Institute for Diabetes, Obesity, and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19146, USA;

The Cullin-3 E3 ligase adaptor protein SPOP targets proteins for ubiquitination and proteasomal degradation. We previously established the β-cell transcription factor (TF) and human diabetes gene PDX1 as an SPOP substrate, suggesting a functional role for SPOP in the β cell. Here, we generated a β-cell-specific deletion mouse strain ( ) and found that is necessary to prevent aberrant basal insulin secretion and for maintaining glucose-stimulated insulin secretion through impacts on glycolysis and glucose-stimulated calcium flux.

View Article and Find Full Text PDF

The efficiency of ultrafiltration (UF) of acidified skim milk (SM) is impaired by protein aggregation and mineral scaling. The aim of this study is to assess the potential of acidification by electrodialysis with bipolar membranes (EDBM), in comparison with citric acid (CA), prior to the UF process on filtration performance, fouling and composition of the protein concentrates. Electro-acidification, facilitated by a water-splitting reaction, decreased the pH of milk to ∼ 5.

View Article and Find Full Text PDF

Circulating mature red blood cells (RBCs) from patients and mice with sickle cell disease (SCD) abnormally retain mitochondria, a factor shown to contribute to the disease's pathobiology. To further understand the functional implications of RBC mitochondria retention in SCD, we used mitochondria inhibitors and metabolites/substrates from the tricarboxylic acid cycle, oxidative phosphorylation and glycolysis pathways (ADP, glutamate, malate, pyruvate, succinate or all metabolites combined) and examined RBC bioenergetics, reactive oxygen species (ROS) levels, calcium flux and hydration. In RBCs from sickle mice, mitochondria inhibition reduced ATP levels by 30%-60%, whereas control RBCs were unaffected.

View Article and Find Full Text PDF

Mineral Scaling in 3D Interfacial Solar Evaporators─A Challenge for Brine Treatment and Lithium Recovery.

Environ Sci Technol

January 2025

Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States.

In this work, we analyzed the effects of mineral scaling on the performance of a 3D interfacial solar evaporator, with a focus on the cations relevant to lithium recovery from brackish water. The field has been rapidly moving toward resource recovery applications from brines with higher cation concentrations. However, the potential complications caused by common minerals in these brines other than NaCl have been largely overlooked.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!