Background: Environmental exposure to endotoxin is a known cause of exacerbation of asthma. Inhaled endotoxin protocols have been used to evaluate airway cell surface phenotypes associated with antigen presentation and innate immunity in healthy volunteers, but not in allergic volunteers.

Objectives: To establish the safety of challenge with low-dose endotoxin (10,000 endotoxin units) (lipopolysaccharide [LPS]) inhalation in allergic individuals, to measure airway cell surface phenotypes associated with antigen presentation and innate immunity in induced sputum (IS) after LPS challenge, and to conduct gene expression profiling in IS cells to determine which host genetic networks are modified by LPS inhalation.

Methods: Induced sputum was obtained before and 6 hours after LPS inhalation in 10 allergic volunteers (8 with asthma and 2 with rhinitis). Flow cytometry was used to examine cell surface phenotypes on IS cells. Genomic expression was analyzed on a subset of IS samples (n = 10) using microarray and ingenuity pathway analysis.

Results: A total of 10,000 endotoxin units of LPS induced significant up-regulation of membrane CD14, CD11b, CD16, HLA-DR, CD86, and Fcepsilon receptor 1 on sputum phagocytes and increased expression of genes that influence antigen-presenting surface molecules (HLA-DR, chemokine ligand 2 or monocyte chemoattractant protein 1, v-rel reticuloendotheliosis viral oncogene homolog, prostaglandin-endoperoxide synthase 2 or cyclooxygenase 2, and transforming growth factor beta), immune activation (CD14, interleukin 1beta, and regulated upon activation, normal T cell expressed and secreted), and inflammation (intracellular adhesion molecule 1 and inhibitory kappaBalpha). Gene profiles for nuclear factor kappaB, interleukin 1, and tumor necrosis factor pathways were also significantly affected.

Conclusions: Low-dose inhaled endotoxin challenge is safe in allergic individuals with mild to moderate disease. It enhances airway cell surface phenotypes and expression of genes associated with antigen presentation, innate immunity, and inflammation. Microarray with ingenuity pathway analysis can be successfully applied to sputum cells to characterize genetic responses to inhaled exacerbants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1081-1206(10)60444-9DOI Listing

Publication Analysis

Top Keywords

cell surface
20
surface phenotypes
16
inhaled endotoxin
12
allergic individuals
12
airway cell
12
associated antigen
12
antigen presentation
12
presentation innate
12
innate immunity
12
endotoxin challenge
8

Similar Publications

Glioblastoma (GBM) is a malignant tumor with highly heterogeneous and invasive characteristics leading to a poor prognosis. The CD44 molecule, which is highly expressed in GBM, has emerged as a highly sought-after biological marker. Therapeutic strategies targeting the cell membrane protein CD44 have emerged, demonstrating novel therapeutic potential.

View Article and Find Full Text PDF

Exploring Glypican-3 targeted CAR-NK treatment and potential therapy resistance in hepatocellular carcinoma.

PLoS One

January 2025

Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America.

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer and the second leading cause of cancer-related mortality globally. Despite advancements in current HCC treatment, it remains a malignancy with poor prognosis. Therefore, developing novel treatment options for patients with HCC is urgently needed.

View Article and Find Full Text PDF

Precise prefractionation of proteome samples is a potent method for realizing in-depth analysis in top-down proteomics. PEPPI-MS (Passively Eluting Proteins from Polyacrylamide gels as Intact species for MS), a gel-based sample fractionation method, enables high-resolution proteome fractionation based on molecular weight by highly efficient extraction of proteins from polyacrylamide gels after SDS-PAGE separation. Thereafter it is essential to effectively remove contaminants such as CBB and SDS from the PEPPI fraction prior to mass spectrometry.

View Article and Find Full Text PDF

Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.

View Article and Find Full Text PDF

AMPA Receptors in Synaptic Plasticity, Memory Function, and Brain Diseases.

Cell Mol Neurobiol

January 2025

Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitarias (CIMES), University of Malaga, Calle Marqués de Beccaria, 3, Campus Teatinos s/n, 29010, Malaga, Spain.

Tetrameric AMPA-type ionotropic glutamate receptors are primary transducers of fast excitatory synaptic transmission in the central nervous system, and their properties and abundance at the synaptic surface are crucial determinants of synaptic efficacy in neuronal communication across the brain. The induction of long-term potentiation (LTP) leads to the insertion of GluA1-containing AMPA receptors at the synaptic surface, whereas during long-term depression (LTD), these receptors are internalized into the cytoplasm of the spine. Disruptions in the trafficking of AMPA receptors to and from the synaptic surface attenuate both forms of synaptic plasticity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!