Methylation changes in porcine primordial germ cells.

Mol Reprod Dev

Department of Animal Science, University of California, Davis, California 95616, USA.

Published: January 2009

Epigenetic re-programming is an important event in the development of primordial germ cells (PGC) into functional gametes, characterized by genome-wide erasure of DNA methylation and re-establishment of epigenetic marks, a process essential for restoration of the potential for totipotency. In this study changes in the methylation status of centromeric repeats and two IGF2-H19 differentially methylated domain (DMD) sequences were examined in porcine PGC between Days 24 and 31 of pregnancy. The methylation levels of centromeric repeats and IGF2-H19 DMD sequences decreased rapidly from Days 24 to 28 in both male and female PGC. At Days 30 and 31 of pregnancy centromeric repeats and IGF2-H19 DMD sequences acquired new methylation in male PGC, while in female PGC these sequences were completely demethylated by Day 30 and remained hypomethylated at Day 31. To characterize methylation changes that PGC undergo in culture, the methylation status of embryonic germ cells (EGCs) derived from PGC at Day 26 of pregnancy was examined. Centromeric repeats and IGF2-H19 DMD sequences were similarly methylated in both male and female EGC and hypermethylated in female EGC compared with female PGC at the same embryonic age. Our results show that, similar to murine PGC, porcine PGC undergo genome-wide DNA demethylation shortly after arrival in the genital ridges. When placed in culture porcine PGC terminate their demethylation program and may acquire new DNA methylation marks. To our knowledge, this is the first report regarding epigenetic re-programming of genital ridge PGC in the pig.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrd.20926DOI Listing

Publication Analysis

Top Keywords

centromeric repeats
16
repeats igf2-h19
16
dmd sequences
16
germ cells
12
pgc
12
porcine pgc
12
igf2-h19 dmd
12
female pgc
12
methylation
8
methylation changes
8

Similar Publications

Telomere-to-telomere sheep genome assembly identifies variants associated with wool fineness.

Nat Genet

January 2025

Frontiers Science Center for Molecular Design Breeding (MOE); State Key Laboratory of Animal Biotech Breeding; College of Animal Science and Technology, China Agricultural University, Beijing, China.

Ongoing efforts to improve sheep reference genome assemblies still leave many gaps and incomplete regions, resulting in a few common failures and errors in genomic studies. Here, we report a 2.85-Gb gap-free telomere-to-telomere genome of a ram (T2T-sheep1.

View Article and Find Full Text PDF

Solitary median maxillary central incisor (SMMCI) syndrome, the mildest form of the holoprosencephaly spectrum, is a rare anomaly characterized by the presence of a single midline central incisor in both the deciduous and permanent dentitions. Affected individuals can present with additional midline defects beyond dental findings. The 22q11.

View Article and Find Full Text PDF

In organisms ranging from vertebrates to plants, major components of centromeres are rapidly evolving repeat sequences, such as tandem repeats (TRs) and transposable elements (TEs), which harbour centromere-specific histone H3 (CENH3). Complete centromere structures recently determined in human and Arabidopsis suggest frequent integration and purging of retrotransposons within the TR regions of centromeres. Despite the high impact of 'centrophilic' retrotransposons on the paradox of rapid centromere evolution, the mechanisms involved in centromere targeting remain poorly understood in any organism.

View Article and Find Full Text PDF

Centromeres are essential for chromosome segregation in eukaryotes, yet their specification is unexpectedly diverse among species and can involve major transitions such as those from localized to chromosome-wide centromeres between monocentric and holocentric species. How this diversity evolves remains elusive. We discovered within-cell variation in the recruitment of the major centromere protein CenH3, reminiscent of variation typically observed among species.

View Article and Find Full Text PDF

Non-canonical (non-B) DNA structures-e.g., bent DNA, hairpins, G-quadruplexes, Z-DNA, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!