Various microbial activities determine the effectiveness of bioremediation processes. In this work, we evaluated the feasibility of gene array hybridization for monitoring the efficiency of biodegradation processes. Biodegradation of 14C-labelled naphthalene and toluene by the aromatic hydrocarbon-degrading Pseudomonas putida F1, P. putida mt-2 and P. putida G7 was followed in mixed liquid culture microcosm by a preliminary, nylon membrane-based gene array. In the beginning of the study, toluene was degraded rapidly and increased amount of toluene degradation genes was detected by the preliminary gene array developed for the study. After toluene was degraded, naphthalene mineralization started and the amount of naphthalene degradation genes increased as biodegradation proceeded. The amount of toluene degradation genes decreased towards the end of the study. The hybridization signal intensities determined by preliminary gene array were in good agreement with mineralization of naphthalene and toluene and with the amount of naphthalene dioxygenase and toluene dioxygenase genes quantified by dot blot hybridization. The clear correlation between the results obtained by the preliminary array and the biodegradation process suggests that gene array methods can be considered as a promising tool for monitoring the efficiency of biodegradation processes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10532-008-9190-6DOI Listing

Publication Analysis

Top Keywords

gene array
20
degradation genes
12
monitoring efficiency
8
efficiency biodegradation
8
biodegradation processes
8
naphthalene toluene
8
study toluene
8
toluene degraded
8
amount toluene
8
toluene degradation
8

Similar Publications

Discovery of PPAR Alpha Lipid Pathway Modulators That Do Not Bind Directly to the Receptor as Potential Anti-Cancer Compounds.

Int J Mol Sci

January 2025

Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia.

Peroxisome proliferator-activated receptors (PPARs) are considered good drug targets for breast cancer because of their involvement in fatty acid metabolism that induces cell proliferation. In this study, we used the KAIMRC1 breast cancer cell line. We showed that the PPARE-Luciferase reporter gets highly activated without adding any exogenous ligand when PPAR alpha is co-transfected, and the antagonist GW6471 can inhibit the activity.

View Article and Find Full Text PDF

MicroRNA-200c in Cancer Generation, Invasion, and Metastasis.

Int J Mol Sci

January 2025

Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.

MicroRNA-200c (miR-200c) is increasingly recognized as a crucial small RNA molecule that plays a significant and multifaceted role in the complex processes of tumor development, invasion, and metastasis across various types of cancers. Recent studies have compellingly demonstrated that miR-200c exerts its influence on tumor biology by meticulously regulating a range of critical processes, including cell proliferation, apoptosis, epithelial-mesenchymal transition (EMT), and cell migration, all of which are essential for the progression and aggressiveness of tumors. This comprehensive review aims to summarize the expression characteristics and functional implications of miR-200c across a diverse array of tumor types, delving into its potential utility as both a biomarker for early detection and a therapeutic target in the realm of cancer treatment.

View Article and Find Full Text PDF

Transcriptome and Neuroendocrinome Responses to Environmental Stress in the Model and Pest Insect .

Int J Mol Sci

January 2025

Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China.

The fall armyworm, , is one of the most notorious pest insects, causing damage to more than 350 plant species, and is feared worldwide as an invasive pest species since it exhibits high adaptivity against environmental stress. Here, we therefore investigated its transcriptome responses to four different types of stresses, namely cold, heat, no water and no food. We used brain samples as our interest was in the neuroendocrine responses, while previous studies used whole bodies of larvae or moths.

View Article and Find Full Text PDF

DNA damage response (DDR) contributes to seed quality by guarding genome integrity in the delicate phases of pre- and post-germination. As a key determinant of stress tolerance and resilience, DDR has notable implications on the wider scale of the agroecosystems challenged by harsh climatic events. The present review focuses on the existing and documented links that interconnect DDR efficiency with an array of molecular hallmarks with biochemical, molecular, and physiological valence within the seed metabolic networks.

View Article and Find Full Text PDF

Genome-Wide microRNA Expression Profiling in Human Spermatozoa and Its Relation to Sperm Quality.

Genes (Basel)

January 2025

Institute for Regenerative Medicine and Biotherapy (IRMB), University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France.

Background: Sperm samples are separated into bad and good quality samples in function of their phenotype, but this does not indicate their genetic quality.

Methods: Here, we used GeneChip miRNA arrays to analyze microRNA expression in ten semen samples selected based on high-magnification morphology (score 6 vs. score 0) to identify miRNAs linked to sperm phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!