Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We have evaluated the induction of the flocculent phenotype of Kloeckera apiculata by glucose mc1 and propose a pathway involved in carbohydrate flocculation induction. Pulses of glucose were given to cells growing in glucose-poor medium (2 g l(-1)) and the flocculation percentage was measured. To elucidate the mechanism involved in flocculation induction, cycloheximide was injected into the cultures 120 min before the glucose pulse. 2,4-Dinitrophenol or cAMP was added to the media instead, or simultaneously with glucose, while a protein kinase A (PKA) inhibitor was added 30 min before the glucose pulse. With 20 and 50 g l(-1) glucose pulse, the yeast flocculation percentage arises to 55 and 65%, respectively. The quantity of proteins and the reflocculating capacity of a lectinic protein extract from the yeast cell wall increase as the concentration of glucose pulse was higher. Cycloheximide prevented the glucose-induced flocculation, while cAMP or 2,4-dinitrophenol increased it 4- and 5-fold, respectively. PKA inhibitor completely prevented the glucose induction flocculation. The flocculent phenotype of K. apiculata mc1 was induced by glucose and the mechanism seems to imply de novo protein (lectin) synthesis via the PKA transduction pathway. This work contributes to the elucidation of the mechanism involved in flocculation induction by glucose of a non-Saccharomyces wine yeast, K. apiculata, which has not been reported. The induction of flocculation by glucose could be a biotechnological tool for the early removal of the indigenous microorganisms from the grape must before the inoculation of a selected starter strain to conduct the alcohol fermentation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10295-008-0357-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!