The Mycobacterium tuberculosis phagosome.

Methods Mol Biol

Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA.

Published: July 2008

Tuberculosis is currently the most devastating human bacterial disease, causing millions of deaths annually and infecting an overwhelming percentage of the global population. Its success as a scourge lies in the ability of Mycobacterium tuberculosis to prevent normal phagolysosome biogenesis, essential to the destruction of invading microorganisms, inside macrophages. Recent work has identified host GTPases involved in the block of normal phagolysosome biogenesis during mycobacterial infection and has provided a set of methods, in particular efficient macrophage transfection, which will prove essential in examining the role of host effectors in this process.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-59745-157-4_28DOI Listing

Publication Analysis

Top Keywords

mycobacterium tuberculosis
8
normal phagolysosome
8
phagolysosome biogenesis
8
tuberculosis phagosome
4
phagosome tuberculosis
4
tuberculosis currently
4
currently devastating
4
devastating human
4
human bacterial
4
bacterial disease
4

Similar Publications

BCG remains the only licensed vaccine for tuberculosis (TB), but its efficacy wanes over time. Subunit vaccines, aim to improve BCG immunity and protection, by inducing responses to a few mycobacterial antigens delivered with a specific platform. Since the platform shapes the immune response induced, selecting the right platform has been challenging due to the lack of immune correlates of protection.

View Article and Find Full Text PDF

Background: Globally, over one-third of pulmonary tuberculosis (TB) disease diagnoses are made based on clinical criteria after a negative bacteriological test result. There is limited information on the factors that determine clinicians' decisions to initiate TB treatment when initial bacteriological test results are negative.

Methods And Findings: We performed a systematic review and individual patient data meta-analysis using studies conducted between January 2010 and December 2022 (PROSPERO: CRD42022287613).

View Article and Find Full Text PDF

The lung environment harbours a community of microbes that play a significant role in health and disease, including innate protection against pathogenic microorganisms. Infection with Mycobacterium tuberculosis, psychological stress associated with the tuberculosis (TB) disease, and the metabolites from the rifampicin treatment regimen have been reported to induce hyperglycemia and consequently type 2 diabetes mellitus (T2DM) in individuals not previously diabetic. The high glucose concentration is proposed to alter the composition of the lung microbiota and airway homeostasis, exerting an influence on TB disease and treatment outcomes.

View Article and Find Full Text PDF

Context: This study aimed to investigate the characteristics, diagnosis, and management of tuberculous longitudinally extensive transverse myelitis (TB-LETM), a rare manifestation of tuberculosis.

Findings: We analyzed two rare cases of TB-LETM and discussed their clinical manifestations and imaging findings in the context of the relevant literature. Patient 1, a 23-year-old female, presented with quadriplegia and dysuria, and spinal magnetic resonance imaging (MRI) revealed lesions extending from C1 to T3.

View Article and Find Full Text PDF

( ) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi-(MDR) and extensively-(XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for long-term survival Here, we report the development of antitubercular small molecules that inhibit the cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule that can bind to the heme cofactor of both enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!