The aim of the present study was to investigate the influence of osmotic pressure on myocardial contractility and the possible mechanism. Electrical stimulation was used to excite papillary muscles of the left ventricle of Sprague-Dawley (SD) rats. The contractilities of myocardium in hyposmotic, isosmotic, and hyperosmotic perfusates were recorded. The influences of agonist and antagonist of the transient receptor potential vanilloid 4 (TRPV4) on the contractility of myocardium under hyposmotic, isosmotic and hyperosmotic conditions were observed. The results were as follows: (1) Compared with that under isosmotic condition (310 mOsm/L), the myocardial contractility was increased by 11.5%, 21.5% and 25.0% (P<0.05) under hyposmotic conditions when the osmotic pressure was at 290, 270 and 230 mOsm/L, respectively; and was decreased by 16.0%, 23.7% and 55.2% (P<0.05) under hyperosmotic conditions when the osmotic pressure was at 350, 370 and 390 mOsm/L, respectively. (2) When ruthenium red (RR), an antagonist of TRPV4, was added to the hyposmotic perfusate (270 mOsm/L), the positive inotropic effect of hyposmia was restrained by 36% (P<0.01); and when RR was added to the hyperosmotic perfusate (390 mOsm/L), the inhibitory effect of hyperosmia on myocardial contractility was increased by 56.1% (P<0.01). (3) When 4-α-phorbol-12,13-didecanoate (4α-PDD), an agonist of TRPV4, was added to the isosmotic perfusate (310 mOsm/L), the myocardial contractility did not change; and when 4α-PDD was added to the hyperosmotic perfusate (390 mOsm/L), the inhibition of myocardial contractility by hyperosmia was increased by 27.1% (P<0.01). These results obtained indicate that TRPV4 is possibly involved in the osmotic pressure-induced inotropic effect.
Download full-text PDF |
Source |
---|
Cardiovasc Res
January 2025
Research Institute, Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, Barcelona, Spain.
Aims: Recurrent acute myocardial infarction (RE-AMI) is a frequent complication after STEMI, and its association with stent thrombosis can be life-threatening. Intravenous atorvastatin (IV-atorva) administration during AMI has been shown to limit infarct size and adverse cardiac remodeling. We determined by cardiac magnetic resonance (CMR) whether the cardioprotection exerted by IV-atorva at the index AMI event translates into a better prognosis upon RE-AMI in dyslipidemic pigs.
View Article and Find Full Text PDFNihon Yakurigaku Zasshi
January 2025
The delay and loss of drugs are serious problems in Japan. To overcome this issue, it is important to strengthen drug development capabilities. For drug development, the establishment and advancement of non-clinical testing methods are necessary for safe and effective clinical trials.
View Article and Find Full Text PDFBMC Cardiovasc Disord
January 2025
Department of Radiology, Qujing No.1 Hospital, Kirin District Garden Road no. 1, Qujing, 655099, China.
Background: Left ventricular (LV) myocardial contraction patterns can be assessed using LV mechanical dispersion (LVMD), a parameter closely associated with electrical activation patterns. Despite its potential clinical significance, limited research has been conducted on LVMD following myocardial infarction (MI). This study aims to evaluate the predictive value of cardiac magnetic resonance (CMR)-derived LVMD for adverse clinical outcomes and to explore its correlation with myocardial scar heterogeneity.
View Article and Find Full Text PDFKaohsiung J Med Sci
January 2025
Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Acute myocardial infarction (AMI) represents a critical health challenge characterized by a significant reduction in blood flow to the heart, leading to high rates of mortality and morbidity. Cardiac troponins, specifically cardiac troponin I and cardiac troponin T, are essential proteins involved in cardiac muscle contraction and serve as vital biomarkers for the diagnosis of AMI. Aptasensors utilize synthetic aptamers or peptides with high affinity for specific biomarkers and offer a promising approach for integration into portable, user-friendly point-of-care (POC) applications.
View Article and Find Full Text PDFCirc Res
January 2025
Department of Integrative Pathophysiology, Medical Faculty Mannheim, DZHK Partnersite Mannheim-Heidelberg, University of Heidelberg, Germany (S.L.).
This review examines the giant elastic protein titin and its critical roles in heart function, both in health and disease, as discovered since its identification nearly 50 years ago. Encoded by the TTN (titin gene), titin has emerged as a major disease locus for cardiac disorders. Functionally, titin acts as a third myofilament type, connecting sarcomeric Z-disks and M-bands, and regulating myocardial passive stiffness and stretch sensing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!